16 research outputs found

    The relationship between chronic type III acromioclavicular joint dislocation and cervical spine pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study was aimed at evaluating whether or not patients with chronic type III acromioclavicular dislocation develop cervical spine pain and degenerative changes more frequently than normal subjects.</p> <p>Methods</p> <p>The cervical spine of 34 patients with chronic type III AC dislocation was radiographically evaluated. Osteophytosis presence was registered and the narrowing of the intervertebral disc and cervical lordosis were evaluated. Subjective cervical symptoms were investigated using the Northwick Park Neck Pain Questionnaire (NPQ). One-hundred healthy volunteers were recruited as a control group.</p> <p>Results</p> <p>The rate and distribution of osteophytosis and narrowed intervertebral disc were similar in both of the groups. Patients with chronic AC dislocation had a lower value of cervical lordosis. NPQ score was 17.3% in patients with AC separation (100% = the worst result) and 2.2% in the control group (p < 0.05). An inverse significant nonparametric correlation was found between the NPQ value and the lordosis degree in the AC dislocation group (p = 0.001) wheras results were not correlated (p = 0.27) in the control group.</p> <p>Conclusions</p> <p>Our study shows that chronic type III AC dislocation does not interfere with osteophytes formation or intervertebral disc narrowing, but that it may predispose cervical hypolordosis. The higher average NPQ values were observed in patients with chronic AC dislocation, especially in those that developed cervical hypolordosis.</p

    The lumbar spine in Neanderthals shows natural kyphosis

    No full text
    Nowadays, lumbar spondylosis is one of the most frequent causes of lower back pain. In order to improve our understanding of the lumbar spine anatomy and functionality over time, we compared the lumbar vertebrae of Neanderthals with those of anatomically modern humans. The fossil record reports on only two Neanderthal skeletons (i.e., Kebara 2 and Shanidar 3, both predating the appearance of modern humans) with full preservation of the entire lumbar spine. Examination of these early hominids showed that they display natural lumbar kyphosis, with only mild degenerative changes of the lumbar spine (ages at death: 30–35 years, Kebara 2; and 35–50 years, Shanidar 3). This finding is highly unexpected since Neanderthals are known to have had extraordinary physical activity due to demanding living conditions. The adult lumbar spines discussed here therefore show no correlation between high physical activity and degenerative spine disease as known from recent times. We speculate that both the kyphosis itself and the massive and heavily muscled skeleton of Neanderthals are causative for the minimal bone degeneration. We conclude that a kyphotic lumbar spine is the natural anatomy in these two Neanderthal individuals. Future research will reveal if this holds true for the entire Neanderthal species
    corecore