4 research outputs found

    Collaborative Augmented Reality Mirror Game

    No full text
    This report describes the development of an augmented reality game by students of the Delft University of Technology. This game, called the Augmented Reality Mirror Game, is a game that uses augmented reality technology to simulate lasers and objects with optical properties like mirrors and beam splitters. The goal of this game is to use these objects to route one or more laser beams from emitters to targets. Collaboration is an essential aspect of the game. Different players have distinct capabilities to manipulate the game world and solve the puzzles.Bachelor ProjectComputer ScienceElectrical Engineering, Mathematics and Computer Scienc

    Tuneable Control of Organocatalytic Activity through Host–Guest Chemistry

    No full text
    Dynamic regulation of chemical reactivity is important in many complex chemical reaction networks, such as cascade reactions and signal transduction processes. Signal responsive catalysts could play a crucial role in regulating these reaction pathways. Recently, supramolecular encapsulation was reported to regulate the activities of artificial catalysts. We present a host-guest chemistry strategy to modulate the activity of commercially available synthetic organocatalysts. The molecular container cucurbit[7]uril was successfully applied to change the activity of four different organocatalysts and one initiator, enabling up- or down-regulation of the reaction rates of four different classes of chemical reactions. In most cases CB[7] encapsulation results in catalyst inhibition, however in one case catalyst activation by binding to CB[7] was observed. The mechanism behind this unexpected behavior was explored by NMR binding studies and pKa measurements. The catalytic activity can be instantaneously switched during operation, by addition of either supramolecular host or competitive binding molecules, and the reaction rate can be predicted with a kinetic model. Overall, this signal responsive system proves a promising tool to control catalytic activity.ChemE/Advanced Soft Matte

    Genomic characterization of four novel bacteriophages infecting the clinical pathogen Klebsiella pneumoniae

    No full text
    Bacteriophages are an invaluable source of novel genetic diversity. Sequencing of phage genomes can reveal new proteins with potential uses as biotechnological and medical tools, and help unravel the diversity of biological mechanisms employed by phages to take over the host during viral infection. Aiming to expand the available collection of phage genomes, we have isolated, sequenced, and assembled the genome sequences of four phages that infect the clinical pathogen Klebsiella pneumoniae: vB_KpnP_FBKp16, vB_KpnP_FBKp27, vB_KpnM_FBKp34, and Jumbo phage vB_KpnM_FBKp24. The four phages show very low (0-13%) identity to genomic phage sequences deposited in the GenBank database. Three of the four phages encode tRNAs and have a GC content very dissimilar to that of the host. Importantly, the genome sequences of the phages reveal potentially novel DNA packaging mechanisms as well as distinct clades of tubulin spindle and nucleus shell proteins that some phages use to compartmentalize viral replication. Overall, this study contributes to uncovering previously unknown virus diversity, and provides novel candidates for phage therapy applications against antibiotic-resistant K. pneumoniae infections. BN/Stan Brouns La

    An educational guide for nanopore sequencing in the classroom

    No full text
    The last decade has witnessed a remarkable increase in our ability to measure genetic information. Advancements of sequencing technologies are challenging the existing methods of data storage and analysis. While methods to cope with the data deluge are progressing, many biologists have lagged behind due to the fast pace of computational advancements and tools available to address their scientific questions. Future generations of biologists must be more computationally aware and capable. This means they should be trained to give them the computational skills to keep pace with technological developments. Here, we propose a model that bridges experimental and bioinformatics concepts using the Oxford Nanopore Technologies (ONT) sequencing platform. We provide both a guide to begin to empower the new generation of educators, scientists, and students in performing long-read assembly of bacterial and bacteriophage genomes and a standalone virtual machine containing all the required software and learning materials for the course.Pattern Recognition and BioinformaticsBN/Stan Brouns LabBN/Technici en Analiste
    corecore