22 research outputs found

    Energy partitioning in N2 microwave discharges: integrated Fokker-Planck approach to vibrational kinetics and comparison with experiments

    Get PDF
    This work investigates energy transfers between electrons, vibrational and translational degrees of freedom and their effect on dissociation mechanisms in a N2 microwave plasma in the pressure range between 50 and 400 mbar. A novel self-consistent 0D plasma chemistry model describing vibrational kinetics via the vibrational energy equation and the Fokker–Planck approach is developed. It is used to simulate conditions achieved experimentally, providing good agreement with measured values of vibrational and gas temperature and electron density. Above 100 mbar, energy efficiency of dissociation increases with power density, due to the significant contribution of collisions between vibrationally excited N2 and electronically excited molecules. Energy transfer to vibrations is maximum at low power density and low pressure due to reduced gas heating

    Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals

    Get PDF
    We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12-16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.e., controlling for parental PGIs) explain roughly half the PGI's magnitude of association with EA and other phenotypes. The correlation between mate-pair PGIs is far too large to be consistent with phenotypic assortment alone, implying additional assortment on PGI-associated factors. In an additional GWAS of dominance deviations from the additive model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57

    Genome-wide association study identifies 74 loci associated with educational attainment

    Get PDF
    Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals1. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample1,2 of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases

    Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences

    Get PDF
    Humans vary substantially in their willingness to take risks. In a combined sample of over 1 million individuals, we conducted genome-wide association studies (GWAS) of general risk tolerance, adventurousness, and risky behaviors in the driving, drinking, smoking, and sexual domains. Across all GWAS, we identified hundreds of associated loci, including 99 loci associated with general risk tolerance. We report evidence of substantial shared genetic influences across risk tolerance and the risky behaviors: 46 of the 99 general risk tolerance loci contain a lead SNP for at least one of our other GWAS, and general risk tolerance is genetically correlated (|r^g| ~ 0.25 to 0.50) with a range of risky behaviors. Bioinformatics analyses imply that genes near SNPs associated with general risk tolerance are highly expressed in brain tissues and point to a role for glutamatergic and GABAergic neurotransmission. We found no evidence of enrichment for genes previously hypothesized to relate to risk tolerance

    Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals.

    Get PDF
    Here we conducted a large-scale genetic association analysis of educational attainment in a sample of approximately 1.1 million individuals and identify 1,271 independent genome-wide-significant SNPs. For the SNPs taken together, we found evidence of heterogeneous effects across environments. The SNPs implicate genes involved in brain-development processes and neuron-to-neuron communication. In a separate analysis of the X chromosome, we identify 10 independent genome-wide-significant SNPs and estimate a SNP heritability of around 0.3% in both men and women, consistent with partial dosage compensation. A joint (multi-phenotype) analysis of educational attainment and three related cognitive phenotypes generates polygenic scores that explain 11-13% of the variance in educational attainment and 7-10% of the variance in cognitive performance. This prediction accuracy substantially increases the utility of polygenic scores as tools in research.Medical Research Council (MC_UU_12015/1), Department of Health (via National Institute for Health Research (NIHR)) (NF-SI-0512-10135), MRC (MC_PC_13048), Department of Health (via National Institute for Health Research (NIHR)) (NF-SI-0617-10149

    Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences

    No full text
    Humans vary substantially in their willingness to take risks. In a combined sample of over 1 million individuals, we conducted genome-wide association studies (GWAS) of general risk tolerance, adventurousness, and risky behaviors in the driving, drinking, smoking, and sexual domains. Across all GWAS, we identified hundreds of associated loci, including 99 loci associated with general risk tolerance. We report evidence of substantial shared genetic influences across risk tolerance and the risky behaviors: 46 of the 99 general risk tolerance loci contain a lead SNP for at least one of our other GWAS, and general risk tolerance is genetically correlated (∣r̂ g∣ ~ 0.25 to 0.50) with a range of risky behaviors. Bioinformatics analyses imply that genes near SNPs associated with general risk tolerance are highly expressed in brain tissues and point to a role for glutamatergic and GABAergic neurotransmission. We found no evidence of enrichment for genes previously hypothesized to relate to risk tolerance.</p

    Transverse momentum spectra of charged particles in proton–proton collisions at √s=900 GeV with ALICE at the LHC

    No full text
    The inclusive charged particle transverse momentum distribution is measured in proton–proton collisions at s=900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (|η|<0.8) over the transverse momentum range 0.15<pT<10 GeV/c. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for |η|<0.8 is 〈pT〉INEL=0.483±0.001 (stat.)±0.007 (syst.) GeV/c and 〈pT〉NSD=0.489±0.001 (stat.)±0.007 (syst.) GeV/c, respectively. The data exhibit a slightly larger 〈pT〉 than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET

    Multi-strange baryon production in pp collisions at √s=7 TeV with ALICE

    No full text
    A measurement of the multi-strange Ξ− and Ω− baryons and their antiparticles by the ALICE experiment at the CERN Large Hadron Collider (LHC) is presented for inelastic proton–proton collisions at a centre-of-mass energy of 7 TeV. The transverse momentum (pT) distributions were studied at mid-rapidity (|y|6.0 GeV/c. We also illustrate the difference between the experimental data and model by comparing the corresponding ratios of (Ω−+Ω¯+)/(Ξ−+Ξ¯+) as a function of transverse mass

    Suppression of charged particle production at large transverse momentum in central Pb–Pb collisions at √sNN=2.76 TeV

    No full text
    Inclusive transverse momentum spectra of primary charged particles in Pb–Pb collisions at √sNN=2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0–5% and 70–80% of the hadronic Pb–Pb cross section. The measured charged particle spectra in |η|<0.8 and 0.3<pT<20 GeV/c are compared to the expectation in pp collisions at the same sNN, scaled by the number of underlying nucleon–nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAA. The result indicates only weak medium effects (RAA≈0.7) in peripheral collisions. In central collisions, RAA reaches a minimum of about 0.14 at pT=6–7 GeV/c and increases significantly at larger pT. The measured suppression of high-pT particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb–Pb collisions at the LHC

    Ks0Ks0 correlations in pp collisions at √s=7 TeV from the LHC ALICE experiment

    No full text
    Identical neutral kaon pair correlations are measured in √s=7 TeV pp collisions in the ALICE experiment. One-dimensional Ks0Ks0 correlation functions in terms of the invariant momentum difference of kaon pairs are formed in two multiplicity and two transverse momentum ranges. The femtoscopic parameters for the radius and correlation strength of the kaon source are extracted. The fit includes quantum statistics and final-state interactions of the a0/f0 resonance. Ks0Ks0 correlations show an increase in radius for increasing multiplicity and a slight decrease in radius for increasing transverse mass, mT, as seen in ππ correlations in pp collisions and in heavy-ion collisions. Transverse mass scaling is observed between the Ks0Ks0 and ππ radii. Also, the first observation is made of the decay of the f2â€Č(1525) meson into the Ks0Ks0 channel in pp collisions
    corecore