106 research outputs found

    Efficient approach to nucleation and growth dynamics. Stationary diffusion flux model. (artikelnr. 164508)

    Get PDF
    A new model describing the evolution of clusters in the processes of nucleation and growth is proposed. The diffusion flux in the nonstationary Fokker–Planck equation with an unknown distribution function is approximated by the closed form expression containing the steady-state solution of the Zeldovich–Frenkel equation. This is justified due to the smallness of induction time of cluster formation compared to the time scale observed in experiments. The resulting stationary diffusion flux model is valid for all cluster sizes, computationally efficient and applicable to various types of cluster formation processes. Its application to a nucleation pulse experiment shows an excellent agreement with the solution of the set of formally exact Becker–Döring equation

    Deep learning based liquid level extraction from video observations of gas-liquid flows

    Get PDF
    The slug flow pattern is one of the most common gas–liquid flow patterns in multiphase transportation pipelines, particularly in the oil and gas industry. This flow pattern can cause severe problems for industrial processes. Hence, a detailed description of the spatial distribution of the different phases in the pipe is needed for automated process control and calibration of predictive models. In this paper, a deep-learning based image processing technique is presented that extracts the gas–liquid interface from video observations of multiphase flows in horizontal pipes. The supervised deep learning model consists of a convolutional neural network, which was trained and tested with video data from slug flow experiments. The consistency of the hand-labelled data and the predictions of the trained model have been evaluated in an inter-observer reliability test. The model was further tested with other data sets, which also included recordings of a different flow pattern. It is shown that the presented method provides accurate and reliable predictions of the gas–liquid interface for slug flow as well as for other separate flow patterns. Moreover, it is demonstrated how flow characteristics can be obtained from the results of the deep-learning based image processing technique

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    Search for gravitational-wave transients associated with magnetar bursts in advanced LIGO and advanced Virgo data from the third observing run

    Get PDF
    Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant f lares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and longduration (∼100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo, and KAGRA’s third observation run. These 13 bursts come from two magnetars, SGR1935 +2154 and SwiftJ1818.0−1607. We also include three other electromagnetic burst events detected by FermiGBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper limits on the rms of the integrated incident gravitational-wave strain that reach 3.6 × 10−²³ Hz at 100 Hz for the short-duration search and 1.1 ×10−²² Hz at 450 Hz for the long-duration search. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to 2.3 × 10−²² Hz. Using the estimated distance to each magnetar, we derive upper limits upper limits on the emitted gravitational-wave energy of 1.5 × 1044 erg (1.0 × 1044 erg) for SGR 1935+2154 and 9.4 × 10^43 erg (1.3 × 1044 erg) for Swift J1818.0−1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935+2154 with the available fluence information. The lowest of these ratios is 4.5 × 103

    A joint Fermi-GBM and Swift-BAT analysis of gravitational-wave candidates from the third gravitational-wave observing run

    Get PDF
    We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers

    Constraints on the cosmic expansion history from GWTC–3

    Get PDF
    We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34 M⊙, followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H(z) measurement, yielding H0=688+12km  s1Mpc1{H}_{0}={68}_{-8}^{+12}\,\mathrm{km}\ \,\ {{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} (68% credible interval) when combined with the H0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of H0=686+8km  s1Mpc1{H}_{0}={68}_{-6}^{+8}\,\mathrm{km}\ \,\ {{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0) is the well-localized event GW190814

    Efficient Solution Methods for N-component Condensation

    Get PDF
    This thesis describes efficient solution methods developed for N-component condensation processes. These methods are aimed at either the reduction of the numerical effort required for solving the equations describing the condensation process or the simplification of the physical description. The models and corresponding algorithms differ in their ability to describe the condensation phenomenon and the required computing times. The equilibrium thermodynamics of real gases is presented and a robust numerical procedure is constructed based on Newton-Raphson iteration. The Jacobian of the system of equations has been determined analytically. The initialization scheme for the iterative procedure for these equilibrium problems uses a pressure-extrapolation scheme. Results are given for a three-phase ternary real-gas mixture. A multigrid method has been developed to enhance the efficiency of implicit numerical methods for solving the N-component Becker-Döring (NBD) equations. The geometrical multigrid method for arbitrary number of grid levels is presented. The multigrid algorithm solves the full set of NBD equations 10 times faster than conventional iterative schemes. The method is restricted to the regime of small cluster sizes due to limited available computational resources. However, the time dependent solution of the NBD equations does provide useful insight in the physics of the initial stages of the nucleation process. For single component condensation the Stationary Diffusion Flux (SDF) model has been derived which is valid in the entire cluster size space. The diffusion flux in the Fokker-Planck equation for unsteady condensation contains an unknown distribution function. This distribution function is approximated by a closed-form expression based on the cluster size distribution function for steady condensation. The resulting Stationary Diffusion Flux model is valid for all cluster sizes, computationally efficient and applicable to various types of cluster formation processes. In the regime of supercritical cluster sizes the diffusion flux is given by an analytical expression. The Phase Path Analysis (PPA) algorithm has been extended to N-component mixtures. For this method the N-component General Dynamic Equation (NGDE) is constructed. This model introduces clusters at a source point in the N-component cluster size space. The model allows for a very fast solution of the approximate Ncomponent cluster size distribution. For validation of the method a nucleation pulse test case involving a binary mixture has been used. Comparison of the numerical results of the NBD equations and those from the NGDE shows excellent agreement for the cluster size, cluster composition and the integral properties of the cluster size distribution. The PPA algorithm applied to the NGDE reduces the computational effort by a factor 105 compared to the effort required for solving the full set of NBD equations
    corecore