46 research outputs found

    Three new chondrosarcoma cell lines: one grade III conventional central chondrosarcoma and two dedifferentiated chondrosarcomas of bone

    Get PDF
    BackgroundChondrosarcoma is the second most common primary sarcoma of bone. High-grade conventional chondrosarcoma and dedifferentiated chondrosarcoma have a poor outcome. In pre-clinical research aiming at the identification of novel treatment targets, the need for representative cell lines and model systems is high, but availability is scarce.MethodsWe developed and characterized three cell lines, derived from conventional grade III chondrosarcoma (L835), and dedifferentiated chondrosarcoma (L2975 and L3252) of bone. Proliferation and migration were studied and we used COBRA-FISH and array-CGH for karyotyping and genotyping. Immunohistochemistry for p16 and p53 was performed as well as TP53 and IDH mutation analysis. Cells were injected into nude mice to establish their tumorigenic potential.ResultsWe show that the three cell lines have distinct migrative properties, L2975 had the highest migration rate and showed tumorigenic potential in mice. All cell lines showed chromosomal rearrangements with complex karyotypes and genotypic aberrations were conserved throughout late passaging of the cell lines. All cell lines showed loss of CDKN2A, while TP53 was wild type for exons 5–8. L835 has an IDH1 R132C mutation, L2975 an IDH2 R172W mutation and L3252 is IDH wild type.ConclusionsBased on the stable culturing properties of these cell lines and their genotypic profile resembling the original tumors, these cell lines should provide useful functional models to further characterize chondrosarcoma and to evaluate new treatment strategies

    Prevalence of von Hippel-Lindau gene mutations in sporadic renal cell carcinoma: results from the Netherlands cohort study

    Get PDF
    BACKGROUND: Biallelic von Hippel-Lindau (VHL) gene defects, a rate-limiting event in the carcinogenesis, occur in approximately 75% of sporadic clear-cell Renal Cell Carcinoma (RCC). We studied the VHL mutation status in a large population-based case group. METHODS: Cases were identified within the Netherlands cohort study on diet and cancer, which includes 120,852 men and women. After 11.3 years of follow-up, 337 incident cases with histologically confirmed epithelial cancers were identified. DNA was isolated from paraffin material collected from 51 pathology laboratories and revised by one pathologist, leaving material from 235 cases. VHL mutational status was assessed by SSCP followed by direct sequencing, after testing SSCP as a screening tool in a subsample. RESULTS: The number of mutations was significantly higher for clear-cell RCC compared to other histological types. We observed 131 mutations in 114 out of 187 patients (61%) with clear-cell RCC. The majority of mutations were truncating mutations (47%). The mean tumor size was 72.7 mm for mutated tumors compared to 65.3 mm for wildtype tumors (p = 0.06). No statistically significant differences were observed for nuclear grade, TNM distribution or stage. In other histological types, we observed 8 mutations in 7 out of 48 patients (15%), 1 mutation in 1 of 6 oncocytoma, 3 mutations in 2 of 7 chromophobe RCC, 2 mutations in 2 of 30 papillary RCC, no mutations in 1 collecting duct carcinoma and 2 mutations in 2 of 4 unclassified RCC. CONCLUSION: VHL mutations were detected in 61% of sporadic clear-cell RCC. VHL mutated and wildtype clear-cell RCC did not differ with respect to most parameters

    A Kinome-wide screen identifies a CDKL5-SOX9 regulatory axis in epithelial cell death and kidney injury

    Get PDF
    © 2020, The Author(s). Renal tubular epithelial cells (RTECs) perform the essential function of maintaining the constancy of body fluid composition and volume. Toxic, inflammatory, or hypoxic-insults to RTECs can cause systemic fluid imbalance, electrolyte abnormalities and metabolic waste accumulation- manifesting as acute kidney injury (AKI), a common disorder associated with adverse long-term sequelae and high mortality. Here we report the results of a kinome-wide RNAi screen for cellular pathways involved in AKI-associated RTEC-dysfunction and cell death. Our screen and validation studies reveal an essential role of Cdkl5-kinase in RTEC cell death. In mouse models, genetic or pharmacological Cdkl5 inhibition mitigates nephrotoxic and ischemia-associated AKI. We propose that Cdkl5 is a stress-responsive kinase that promotes renal injury in part through phosphorylation-dependent suppression of pro-survival transcription regulator Sox9. These findings reveal a surprising non-neuronal function of Cdkl5, identify a pathogenic Cdkl5-Sox9 axis in epithelial cell-death, and support CDKL5 antagonism as a therapeutic approach for AKI

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    The multiple facets of drug resistance: one history, different approaches

    Full text link

    Targeting survivin as a potential new treatment for chondrosarcoma of bone

    Get PDF
    Chondrosarcomas are malignant cartilage-forming bone tumors, which are intrinsically resistant to chemo- and radiotherapy, leaving surgical removal as the only curative treatment option. Therefore, our aim was to identify genes involved in chondrosarcoma cell survival that could serve as a target for therapy. siRNA screening for 51 apoptosis-related genes in JJ012 chondrosarcoma cells identified BIRC5, encoding survivin, as essential for chondrosarcoma survival. Using immunohistochemistry, nuclear as well as cytoplasmic survivin expression was analyzed in 207 chondrosarcomas of different subtypes. Nuclear survivin has been implicated in cell-cycle regulation while cytoplasmic localization is important for its anti-apoptotic function. RT–PCR was performed to determine expression of the most common survivin isoforms. Sensitivity to YM155, a survivin inhibitor currently in phase I/II clinical trial for other tumors, was examined in 10 chondrosarcoma cell lines using viability assay, apoptosis assay and cell-cycle analysis. Survivin expression was found in all chondrosarcoma patient samples. Higher expression of nuclear and cytoplasmic survivin was observed with increasing histological grade in central chondrosarcomas. Inhibition of survivin using YM155 showed that especially TP53 mutant cell lines were sensitive, but no caspase 3/7 or PARP cleavage was observed. Rather, YM155 treatment resulted in a block in S phase in two out of three chondrosarcoma cell lines, indicating that survivin is more involved in cell-cycle regulation than in apoptosis. Thus, survivin is important for chondrosarcoma survival and chondrosarcoma patients might benefit from survivin inhibition using YM155, for which TP53 mutational status can serve as a predictive biomarker

    Functional profiling of receptor tyrosine kinases and downstream signaling in human chondrosarcomas identifies pathways for rational targeted therapy.

    No full text
    PURPOSE: Chondrosarcomas are notoriously resistant to cytotoxic chemotherapeutic agents. We sought to identify critical signaling pathways that contribute to their survival and proliferation, and which may provide potential targets for rational therapeutic interventions. EXPERIMENTAL DESIGN: Activation of receptor tyrosine kinases (RTK) was surveyed using phospho-RTK arrays. S6 phosphorylation and NRAS mutational status were examined in chondrosarcoma primary tumor tissues. siRNA or small-molecule inhibitors against RTKs or downstream signaling proteins were applied to chondrosarcoma cells and changes in biochemical signaling, cell cycle, and cell viability were determined. In vivo antitumor activity of BEZ235, a phosphoinositide 3-kinase (PI3K)/mTOR inhibitor, was evaluated in a chondrosarcoma xenograft model. RESULTS: Several RTKs were identified as critical mediators of cell growth, but the RTK dependencies varied among cell lines. In exploration of downstream signaling pathways, strong S6 phosphorylation was found in 69% of conventional chondrosarcomas and 44% of dedifferentiated chondrosarcomas. Treatment with BEZ235 resulted in dramatic reduction in the growth of all chondrosarcoma cell lines. Tumor growth was similarly inhibited in a xenograft model of chondrosarcoma. In addition, chondrosarcoma cells with an NRAS mutation were sensitive to treatment with a mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) inhibitor. Functional NRAS mutations were found in 12% of conventional central chondrosarcomas. CONCLUSIONS: RTKs are commonly activated in chondrosarcoma, but because of their considerable heterogeneity, targeted inhibition of the PI3K/mTOR pathway represents a rational therapeutic strategy. Chondrosarcomas with NRAS mutations may benefit from treatment with MEK inhibitors

    Screening for Potential Targets for Therapy in Mesenchymal, Clear Cell, and Dedifferentiated Chondrosarcoma Reveals Bcl-2 Family Members and TGF beta as Potential Targets

    No full text
    The mesenchymal, clear cell, and dedifferentiated chondrosarcoma subtypes are extremely rare, together constituting 10% to 15% of all chondrosarcomas. Their poor prognosis and lack of efficacious treatment emphasizes the need to elucidate the pathways playing a pivotal role in these tumors. We constructed tissue microarrays containing 42 dedifferentiated, 23 clear cell, and 23 mesenchymal chondrosarcomas and performed immunohistochemistry to study the expression of growth plate-signaling molecules and molecules shown to be involved in conventional chondrosarcoma. We observed high expression of SOX-9 and FGFR-3, as well as aberrant cellular localization of heparan sulfate proteoglycans, in all subtypes. TGFβ signaling through p-SMAD2 and PAI-1 was highly active in all chondrosarcoma subtypes, which suggests that TGFβ inhibitors as a possible therapeutic strategy in rare chondrosarcoma subtypes. As in conventional chondrosarcoma, antiapoptotic proteins (Bcl-2, and/or Bcl-xl) were highly expressed in all subtypes. Inhibition with the BH-3 mimetic ABT-737 rendered dedifferentiated chondrosarcoma cell lines sensitive to doxorubicin or cisplatin. Our data indicate that antiapoptotic proteins may play an important role in chemoresistance, suggesting a promising role for targeting Bcl-2 family members in chondrosarcoma treatment, irrespective of the subtype
    corecore