17 research outputs found

    Mechano-energetics of the asynchronous and resynchronized heart

    Get PDF
    Abnormal electrical activation of the ventricles creates major abnormalities in cardiac mechanics. Local contraction patterns, as reflected by measurements of local strain, are not only out of phase, but often also show opposing length changes in early and late activated regions. As a consequence, the efficiency of cardiac pump function (the amount of stroke work generated by a unit of oxygen consumed) is approximately 30% lower in asynchronous than in synchronous hearts. Moreover, the amount of work performed in myocardial segments becomes considerably larger in late than in early activated regions. Cardiac Resynchronization Therapy (CRT) improves mechano-energetics of the previously asynchronous heart in various ways: it alleviates impediment of the abnormal contraction on blood flow, it increases myocardial efficiency, it recruits contraction in the previously early activated septum and it creates a more uniform distribution of myocardial blood flow. These factors act together to increase the range of cardiac work that can be delivered by the patients’ heart, an effect that can explain the increased exercise tolerance and quality of life reported in several CRT trials

    Etablierung eines neuen minimal-invasiven Modells zur repetitiven Messung der Organperfusion beim Kaninchen

    No full text

    Alterations in adult rat heart after neonatal dexamethasone therapy

    No full text
    Glucocorticoid treatment in preterm babies to prevent chronic lung disease causes myocardial hypertrophy and increased myocardial protein content. Although these changes are thought to be transient, there is evidence that dexamethasone (DEX) induces permanent myocardial abnormalities as well. We investigated whether a therapeutic course of neonatal DEX in rat pups produces anatomic and biochemical alterations in rat hearts during adult life. Twenty-four rat pups were treated with DEX on d 1, 2, and 3 (0.5, 0.3, and 0.1 mug/g) of life, with doses proportional to those used in preterm babies. Twenty-four control pups were treated with saline. At d 7, wk 8, or wk 45 (n = 8 per group) rats were killed. The anatomic parameters measured were body weight (Bw, in grams), heart (myocardial) weight (Hw, in milligrams), and the Hw:Bw ratio. Myocardial total protein (Prot) and DNA content were determined, and the Prot:DNA ratio was calculated. Histopathology and morphometry were performed on 45-wk-old rat hearts. In DEX-treated rat pups, at d 7, Bw and Hw were lower and the Hw:Bw ratio was increased. DNA content was lower, Prot higher, and Prot:DNA ratio was increased. In 8-wk-old rats Bw, Hw, DNA content, Prot content or Prot:DNA ratio did not differ between groups, but the Prot:DNA ratio still tended to be higher in DEX-treated rats. In 45-wk-old rats Hw and Hw:Bw ratio were significantly lower and Prot:DNA ratio higher in DEX-treated rats. Histopathologic analysis showed larger cardiomyocyte volume, length, and width, indicating hypertrophy, and increased collagen, indicating early degeneration of individual myocytes. In conclusion, neonatal DEX treatment in rat pups causes a permanent decrease in heart weight, as well as hypertrophy and early degeneration of cardiomyocytes during adulthood

    Asynchronous electrical activation induces asymmetrical hypertrophy of the left ventricular wall

    No full text
    Background—Asynchronous electrical activation, induced by ventricular pacing, causes regional differences in workload, which is lower in early- than in late-activated regions. Because the myocardium usually adapts its mass and structure to altered workload, we investigated whether ventricular pacing leads to inhomogeneous hypertrophy and whether such adaptation, if any, affects global left ventricular (LV) pump function. Methods and Results—Eight dogs were paced at physiological heart rate for 6 months (AV sequential, AV interval 25 ms, ventricular electrode at the base of the LV free wall). Five dogs were sham operated and served as controls. Ventricular pacing increased QRS duration from 47.2±10.6 to 113±16.5 ms acutely and to 133.8±25.2 ms after 6 months. Two-dimensional echocardiographic measurements showed that LV cavity and wall volume increased significantly by 27±15% and 15±17%, respectively. The early-activated LV free wall became significantly (17±17%) thinner, whereas the late-activated septum thickened significantly (23±12%). Calculated sector volume did not change in the LV free wall but increased significantly in the septum by 39±13%. In paced animals, cardiomyocyte diameter was significantly (18±7%) larger in septum than in LV free wall, whereas myocardial collagen fraction was unchanged in both areas. LV pressure-volume analysis showed that ventricular pacing reduced LV function to a similar extent after 15 minutes and 6 months of pacing. Conclusions—Asynchronous activation induces asymmetrical hypertrophy and LV dilatation. Cardiac pump function is not affected by the adaptational processes. These data indicate that local cardiac load regulates local cardiac mass of both myocytes and collagen

    Suppression of physiological cardiomyocyte proliferation in the rat pup after neonatal glucocorticosteroid treatment

    No full text
    Background Glucocorticosteroids (mostly dexamethasone) are widely used to prevent chronic lung disease in premature infants. Neonatal rats treated with dexamethasone have been shown to have reduced cardiac mass and cardiomyocyte hypertrophy, suggesting a lower number of cardiomyocytes at adult age, and a severely reduced life expectancy. In the present study we tested the hypothesis that a lower number of cardiomyocytes in later life is caused by a reduced cardiomyocyte proliferation and/or by early cell death (apoptosis). Methods and results Rat pups received dexamethasone or saline control on day 1, 2 and 3 and were sacrificed at day 0, 2, 4, 7 and 21. The cardiomyocytes of dexamethasone treated pups showed a reduced proliferation as indicated by a lower mitotic index and reduced number of Ki-67 positive cardiomyocytes on day 2 and 4 as compared to day 0 and day 7 and also as compared to the age-matched saline pups. On day 7 and day 21 the mitotic index was not different between groups. From day 2 onward up to day 21 dexamethasone treated pups showed a lower number of cardiomyocytes. The cardiomyocytes showed no signs
    corecore