5 research outputs found

    Plasma proteomic patterns show sex differences in early concentric left ventricular remodeling

    Get PDF
    BACKGROUND: Concentric remodeling (cRM) can precede heart failure with preserved ejection fraction (HFpEF), a condition prevalent in women. METHODS: Patients (n=60 593, 54.2% women) visiting outpatient clinics of Cardiology Centers of the Netherlands were analyzed for cRM, HFpEF development, and mortality risk. We studied risk factors for relative wall thickness both sex-stratified and in women and men combined. Biomarker profiling was performed (4534 plasma proteins) in a substudy involving 557 patients (65.4% women) to identify pathways involved in cRM. RESULTS: cRM was present in 23.5% of women and 27.6% of men and associated with developing HFpEF (HR, 2.15 [95% CI, 1.51-2.99]) and mortality risk (HR, 1.09 [95% CI, 1.00-1.19]) in both sexes. Age, heart rate, and hypertension were statistically significantly stronger risk factors for relative wall thickness in women than men. Higher circulating levels of IFNA5 (interferon alpha-5) were associated with higher relative wall thickness in women only. Pathway analysis revealed differential pathway activation by sex and increased expression of inflammatory pathways in women. CONCLUSIONS: cRM is prevalent in approximately 1 in 4 women and men visiting outpatient cardiology clinics and associated with HFpEF development and mortality risk in both sexes. Known risk factors for cRM were more strongly associated in women than men. Proteomic analysis revealed inflammatory pathway activation in women, with a central role for IFNA5. Differential biologic pathway activation by sex in cRM may contribute to the female predominance of HFpEF and holds promise for identification of new therapeutic avenues for prevention and treatment of HFpEF. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT001747

    Cardiovascular imaging of women and men visiting the outpatient clinic with chest pain or discomfort: design and rationale of the ARGUS Study

    No full text
    Introduction Chest pain or discomfort affects 20%–40% of the general population over the course of their life and may be a symptom of myocardial ischaemia. For the diagnosis of obstructive macrovascular coronary artery disease (CAD), algorithms have been developed; however, these do not exclude microvascular angina. This may lead to false reassurance of symptomatic patients, mainly women, with functionally significant, yet non-obstructive coronary vascular disease. Therefore, this study aims to estimate the prevalence of both macrovascular and microvascular coronary vascular disease in women and men presenting with chest pain or discomfort, and to subsequently develop a decision-support tool to aid cardiologists in referral to cardiovascular imaging for both macrovascular and microvascular CAD evaluation.Methods and analysis Women and men with chest pain or discomfort, aged 45 years and older, without a history of cardiovascular disease, who are referred to an outpatient cardiology clinic by their general practitioner are eligible for inclusion. Coronary CT angiography is used for anatomical imaging. Additionally, myocardial perfusion imaging by adenosine stress cardiac MRI is performed to detect functionally significant coronary vascular disease. Electronic health record data, collected during regular cardiac work-up, including medical history, cardiovascular risk factors, physical examination, echocardiography, (exercise) ECG and blood samples for standard cardiovascular biomarkers and research purposes, are obtained. Participants will be classified as positive or negative for coronary vascular disease based on all available data by expert panel consensus (a cardiovascular radiologist and two cardiologists). After completion of the clinical study, all collected data will be used to develop a decision support tool using predictive modelling and machine-learning techniques.Ethics and dissemination The study protocol was approved by the Institutional Review Board of the University Medical Center Utrecht. Results will be disseminated through national and international conferences and in peer-reviewed journals in cardiovascular disease.Trial registration number Trialregister.nl Registry NL8702

    MRI-guided single fraction ablative radiotherapy for early-stage breast cancer : a brachytherapy versus volumetric modulated arc therapy dosimetry study

    No full text
    BACKGROUND AND PURPOSE: A radiosurgical treatment approach for early-stage breast cancer has the potential to minimize the patient's treatment burden. The dosimetric feasibility for single fraction ablative radiotherapy was evaluated by comparing volumetric modulated arc therapy (VMAT) with an interstitial multicatheter brachytherapy (IMB) approach. METHODS AND MATERIALS: The tumors of 20 patients with early-stage breast cancer were delineated on a preoperative contrast-enhanced planning CT-scan, co-registered with a contrast-enhanced magnetic resonance imaging (MRI), both in radiotherapy supine position. A dose of 15Gy was prescribed to the planned target volume of the clinical target volume (PTVCTV), and 20Gy integrated boost to the PTV of the gross tumor volume (PTVGTV). Treatment plans for IMB and VMAT were optimized for adequate target volume coverage and minimal organs at risk (OAR) dose. RESULTS: The median PTVGTV/CTV receiving at least 95% of the prescribed dose was ⩾99% with both techniques. The median PTVCTV unintentionally receiving 95% of the prescribed PTVGTV dose was 65.4% and 4.3% with IMB and VMAT, respectively. OAR doses were comparable with both techniques. CONCLUSION: MRI-guided single fraction radiotherapy with an integrated ablative boost to the GTV is dosimetrically feasible with both techniques. We perceive IMB less suitable for clinical implementation due to PTVCTV overdosage. Future studies have to confirm the clinical feasibility of the single fraction ablative approach

    The HFA-PEFF score identifies ‘early-HFpEF’ phenogroups associated with distinct biomarker profiles

    No full text
    Aims: The HFA-PEFF score was developed to optimize diagnosis and to aid in early recognition of heart failure (HF) with preserved ejection fraction (HFpEF) in patients who present with HF-like symptoms. Recognizing early-HFpEF phenogroups is essential to better understand progression towards overt HFpEF and pave the way for early intervention and treatment. Whether the HFA-PEFF domain scores can identify ‘early-HFpEF’ phenogroups remains unknown. The aims of this pilot study are to (i) identify distinct phenogroups by cluster analysis of HFA-PEFF domain scores in subjects that present with HF-like symptoms and (ii) study whether these phenogroups may be associated with distinct blood proteome profiles. Methods and results: Subjects referred to the Cardiology Centers of the Netherlands, location Utrecht, with non-acute possibly cardiac-related symptoms (such as dyspnoea or fatigue) were prospectively enrolled in the HELPFul cohort (N = 507) and were included in the current analysis. Inclusion criteria for this study were (i) age ≥ 45 years and (ii) a left ventricular ejection fraction (LVEF) ≥ 50%, in the absence of a history of HF, coronary artery disease, congenital heart disease, or any previous cardiac interventions. Multinominal-based clustering with latent class model using the HFA-PEFF domain scores (functional, structural, and biomarker scores) as input was used to detect distinct phenotypic clusters. For each bootstrapping run, the 92 Olink proteins were analysed for their association with the identified phenogroups. Four distinct phenogroups were identified in the current analysis (validated by bootstrapping 1000×): (i) no left ventricular diastolic dysfunction (no LVDD, N = 102); (ii) LVDD with functional left ventricular (LV) abnormalities (N = 204); (iii) LVDD with functional and structural LV abnormalities (N = 204); and (iv) LVDD with functional and structural LV abnormalities and elevated BNP (N = 107). The HFA-PEFF total score risk categories significantly differed between the phenogroups (P < 0.001), with an increase of the HFA-PEFF score from Phenogroup 1 to 4 (low/intermediate/high HFA-PEFF risk score: Phenogroup 1: 88%/12%/0%; Phenogroup 2: 9%/91%/0%; Phenogroup 3: 0%/92%/8%; Phenogroup 4: 5%/83%/12%). Thirty-two out of the 92 Olink protein biomarkers significantly differed among the phenogroups. The top eight biomarkers—N-terminal prohormone brain natriuretic peptide, growth differentiation factor-15, matrix metalloproteinase-2, osteoprotegerin, tissue inhibitor of metalloproteinase-4, chitinase-3-like protein 1, insulin-like growth factor-binding protein 2, and insulin-like growth factor-binding protein 7—are mainly involved in inflammation and extracellular matrix remodelling, which are currently proposed key processes in HFpEF pathophysiology. Conclusions: This study identified distinct phenogroups by using the HFA-PEFF domain scores in ambulant subjects referred for HF-like symptoms. The newly identified phenogroups accompanied by their circulating biomarkers profile might aid in a better understanding of the pathophysiological processes involved during the early stages of the HFpEF syndrome

    Cardiovascular imaging of women and men visiting the outpatient clinic with chest pain or discomfort: Design and rationale of the ARGUS Study

    No full text
    Introduction Chest pain or discomfort affects 20%-40% of the general population over the course of their life and may be a symptom of myocardial ischaemia. For the diagnosis of obstructive macrovascular coronary artery disease (CAD), algorithms have been developed; however, these do not exclude microvascular angina. This may lead to false reassurance of symptomatic patients, mainly women, with functionally significant, yet non-obstructive coronary vascular disease. Therefore, this study aims to estimate the prevalence of both macrovascular and microvascular coronary vascular disease in women and men presenting with chest pain or discomfort, and to subsequently develop a decision-support tool to aid cardiologists in referral to cardiovascular imaging for both macrovascular and microvascular CAD evaluation. Methods and analysis Women and men with chest pain or discomfort, aged 45 years and older, without a history of cardiovascular disease, who are referred to an outpatient cardiology clinic by their general practitioner are eligible for inclusion. Coronary CT angiography is used for anatomical imaging. Additionally, myocardial perfusion imaging by adenosine stress cardiac MRI is performed to detect functionally significant coronary vascular disease. Electronic health record data, collected during regular cardiac work-up, including medical history, cardiovascular risk factors, physical examination, echocardiography, (exercise) ECG and blood samples for standard cardiovascular biomarkers and research purposes, are obtained. Participants will be classified as positive or negative for coronary vascular disease based on all available data by expert panel consensus (a cardiovascular radiologist and two cardiologists). After completion of the clinical study, all collected data will be used to develop a decision support tool using predictive modelling and machine-learning techniques. Ethics and dissemination The study protocol was approved by the Institutional Review Board of the University Medical Center Utrecht. Results will be disseminated through national and international conferences and in peer-reviewed journals in cardiovascular disease. Trial registration number Trialregister.nl Registry NL8702
    corecore