9 research outputs found

    Variable region V1 of Saccharomyces cerevisiae 18S rRNA participates in biogenesis and function of the small ribosomal subunit

    No full text
    The role of helix 6, which forms the major portion of the most 5'-located expansion segment of Saccharomyces cerevisiae 18S rRNA, was studied by in vivo mutational analysis. Mutations that increased the size of the helical part and/or the loop, even to a relatively small extent, abolished 18S rRNA formation almost completely. Concomitantly, 35S pre-rRNA and an abnormal 23S precursor species accumulated. rDNA units containing these mutations did not support cell growth. A deletion removing helix 6 almost completely, on the other hand, had a much less severe effect on the formation of 18S rRNA, and cells expressing only the mutant rRNA remained able to grow, albeit at a much reduced rate. Disruption of the apical A U base pair by a single point mutation did not cause a noticeable reduction in the level of 18S rRNA but did result in a twofold lower growth rate of the cells. This effect could not be reversed by introduction of a second point mutation that restores base pairing. We conclude that both the primary and the secondary structure of helix 6 play an important role in the formation and the bilogical function of the 40S subunit

    The ribosomal translocase homologue Snu114p is involved in unwinding U4/U6 RNA during activation of the spliceosome

    No full text
    Snu114p is a yeast U5 snRNP protein homologous to the ribosomal elongation factor EF-2. Snu114p exhibits the same domain structure as EF-2, including the G-domain, but with an additional N-terminal domain. To test whether Snu114p in the spliceosome is involved in rearranging RNA secondary structures (by analogy to EF-2 in the ribosome), we created conditionally lethal mutants. Deletion of this N-terminal domain (snu114ΔN) leads to a temperature-sensitive phenotype at 37°C and a pre-mRNA splicing defect in vivo. Heat treatment of snu114ΔN extracts blocked splicing in vitro before the first step. The snu114ΔN still associates with the tri-snRNP, and the stability of this particle is not significantly impaired by thermal inactivation. Heat treatment of snu114ΔN extracts resulted in accumulation of arrested spliceosomes in which the U4 RNA was not efficiently released, and we show that U4 is still base paired with the U6 RNA. This suggests that Snu114p is involved, directly or indirectly, in the U4/U6 unwinding, an essential step towards spliceosome activation

    Evolutionarily conserved structural elements are critical for processing of Internal Transcribed Spacer 2 from Saccharomyces cerevisiae precursor ribosomal RNA.

    No full text
    Structural features of Internal Transcribed Spacer 2 (ITS2) important for the correct and efficient removal of this spacer from Saccharomyces cerevisiae pre-rRNA were identified by in vivo mutational analysis based upon phylogenetic comparison with its counterparts from four different yeast species. Compatibility between ITS2 structure and the S. cervisiae processing machinery was found to have been maintained over only a short evolutionary distance, in contrast to the situation for ITS1. Nevertheless, cis-acting elements required for correct and efficient processing are confined predominantly to those regions of the spacer that show the highest degree of evolutionary conservation. Mutation or deletion of each of these regions severely reduced production of mature 26 S, but not 17 S rRNA, mainly by impeding processing of the 29 S(B) precursor. In some eases, however, conversion of 29 S(A) into 29 S(B) pre-rRNA also appeared to be affected. Deletion of non-conserved segments, on the other hand, caused little or no disturbance in processing. Surprisingly some combinations of such individually neutral deletions had a severe negative effect on the removal of ITS2, suggesting a requirement for a higher-order structure of ITS2. Finally, even structural alterations of ITS2 that did not noticeably affect processing, significantly reduced the growth rate of cells that exclusively express the mutant rDNA units. We take this as further evidence for a direct role of ITS2 in the formation of fully functional 60 S ribosomal subunits
    corecore