40 research outputs found

    Microfluidic devices for in vitro studies on liver drug metabolism and toxicity

    No full text
    Microfluidic technologies enable the fabrication of advanced in vitro systems incorporating liver tissue or cells to perform metabolism and toxicity studies for drugs and other xenobiotics. The use of microfluidics provides the possibility to utilize a flow of medium, thereby creating a well-controlled microenvironment. The general goals of most in vitro systems in drug research are to optimally mimic the in vivo situation, and to minimize the number of animals required for preclinical studies. Moreover, they may contribute to a reduced attrition rate of drugs at a late stage of the drug development process; this is especially true if human tissue or cells are used. A number of factors are important in achieving good in vivo predictability in microfluidic systems, of which the biological system itself (cells or tissue) and the incubation conditions are the most important. The last couple of years have seen various microfluidic-based in vitro systems being developed to incorporate many different cells and/or tissues. In this review, microfluidics-based in vitro systems realized to study liver metabolism and toxicity are summarized and discussed with respect to their applications, advantages, and limitations. The biological basis of these systems is evaluated, and incubation conditions considered. Precise control of the cell or tissue microenvironment is a key advantage of using microfluidic technologies, and the benefits of exposing the cells to medium flow are demonstrated. Special attention is also paid to the incorporation of multiple cell types or tissues into a microfluidic device for the investigation of interorgan interactions, which are difficult if not impossible to study in conventional systems

    Microfluidics Enables Small-Scale Tissue-Based Drug Metabolism Studies With Scarce Human Tissue

    No full text
    Early information on the metabolism and toxicity properties of new drug candidates is crucial for selecting the right candidates for further development. Preclinical trials rely on cell-based in vitro tests and animal studies to characterize the in vivo behavior of drug candidates, although neither are ideal predictors of drug behavior in humans. Improving in vitro systems for preclinical studies both from a technological and biological model standpoint thus remains a major challenge. This article describes how microfluidics can be exploited to come closer to this goal in combination with precision-cut liver slices (PCLS) as an improved organomimetic system. Recently, we developed a novel microfluidic-based system incorporating a microchamber for slice perifusion to perform drug metabolism studies with mammalian PCLS under continuous flow. In the present study, the viability and metabolism of human PCLS were assessed by the measurement of the leakage of liver-specific enzymes and metabolism of four different substrates: lidocaine, 7-hydroxycoumarin, 7-ethoxycoumarin, and testosterone. All experiments were verified with well plates, an excellent benchmark for these experiments. Clearly, however, human tissue is not readily available, and it is worth considering how to perform a maximum number of informative experiments with small amounts of material. In one approach, the microfluidic system was coupled to an HPLC system to allow on-line monitoring and immediate detection of unstable metabolites, something that is generally not possible with conventional well-plate systems. This novel microfluidic system also enables the in vitro measurement of interorgan interactions by connecting microchambers containing different organ slices in series for sequential perfusion. This versatile experimental system has the potential to yield more information about the metabolic profiles of new drug candidates in human and animal tissues in an early stage of development compared with well plates alone. (JALA 2011; 16:468-76

    Microfluidic Biochip for the Perifusion of Precision-Cut Rat Liver Slices for Metabolism and Toxicology Studies

    No full text
    Early detection of kinetic, metabolic, and toxicity (ADME-Tox) profiles for new drug candidates is of crucial importance during drug development. This article describes a novel in vitro system for the incubation of precision-cut liver slices (PCLS) under flow conditions, based on a poly(dimethylsiloxane) (PDMS) device containing 25-mu L microchambers for integration of the slices. The microdevice is coupled to a perifusion system, which enables a constant delivery of nutrients and oxygen and a continuous removal of waste products. Both a highly controlled incubation environment and high metabolite detection sensitivity could be achieved using microfluidics. Liver slices were viable for at least 24 h in the microdevice. The compound, 7-ethoxycoumarin (7-EC), was chosen to test metabolism, since its metabolism includes both phase I and phase 11 metabolism and when tested in the conventional well plate system, correlates well with the in vivo situation (De Kanter et al. 2004. Xenobiotica 34(3): 229-241.). The metabolic rate of 7-EC was found to be 214 +/- 5 pmol/min/mg protein in the microdevice, comparable to well plates, and was constant over time for at least 3 h. This perifusion system better mimics the in vivo situation, and has the potential to significantly contribute to drug metabolism and toxicology studies of novel chemical entities. Biotechnol. Bioeng. 2010;105: 184-194. (C) 2009 Wiley Periodicals, Inc

    A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices

    No full text
    Over the past two decades, it has become increasingly clear that the intestine, in addition to the liver, plays an important role in the metabolism of xenobiotics. Previously, we developed a microfluidic-based in vitro system for the perifusion of precision-cut liver slices for metabolism studies. In the present study, the applicability of this system for the perifusion of precision-cut intestinal slices, and for the sequential perifusion of intestinal and liver slices, all from rat, was tested to mimic the in vivo first pass situation. Intestinal and liver slices, exposed to the substrates 7-ethoxycoumarin (7-EC), 7-hydroxycoumarin (7-HC) and lidocaine (Li), exhibited similar metabolic rates in the biochip and in the well plates for periods of at least 3 h. The metabolic rate remained the same when two slices were placed in adjacent microchambers and perifused sequentially. In addition, the system has been adapted to sequentially perifuse intestinal and liver tissue slices in a two-compartment co-culture perfusion system with a continuous flow of medium. It becomes possible to direct metabolites or other excreted compounds formed by an intestinal slice in the first compartment to the second compartment containing a liver slice. The intestine does not influence liver metabolism for these substrates. The interplay between these two organs was demonstrated by exposing the slices to the primary bile acid, chenodeoxycholic acid (CDCA). CDCA induced the expression of fibroblast growth factor 15 (FGF15) in the intestinal slice, which resulted in a stronger down-regulation of the enzyme, cytochrome P450 7A1 (CYP7A1), in the liver slice in the second compartment than when the liver slice was exposed to CDCA in a single-microchamber biochip. We thus demonstrate in this paper that intestinal slices, in addition to liver slices, remain functional in the biochip under flow conditions, and that the two-microchamber biochip has great potential for the study of interorgan effects. This is the first example of the incorporation of both liver and intestinal slices in a microfluidic device. Use of this microfluidic system will improve our insight into interorgan interactions and elucidate as yet unknown mechanisms involved in toxicity, gene regulation and drug-drug interactions

    Hydrogel Embedding of Precision-Cut Liver Slices in a Microfluidic Device Improves Drug Metabolic Activity

    No full text
    A microfluidic-based biochip made of poly(dimethylsiloxane) was recently reported for the first time by us for the incubation of precision-cut liver slices (PCLS). In this system, PCLS are continuously exposed to flow, to keep the incubation environment stable over time. Slice behavior in the biochip was compared with that of slices incubated in well plates, and verified for 24 h. The goal of the present study was to extend this incubation time. The viability and metabolic activity of precision-cut rat liver slices cultured in our novel microflow system was examined for 72 h. Slices were incubated for 1, 24, 48, and 72 h, and tested for viability (enzyme leakage (lactate dehydrogenase)) and metabolic activity (7-hydroxycoumarin (phase II) and 7-ethoxycoumarin (phase I and II)). Results show that liver slices retained a higher viability in the biochip when embedded in a hydrogel (Matrigel) over 72 h. This embedding prevented the slices from attaching to the upper polycarbonate surface in the microchamber, which occurred during prolonged (> 24 h) incubation in the absence of hydrogel. Phase II metabolism was completely retained in hydrogel-embedded slices when medium supplemented with dexamethasone, insulin, and calf serum was used. However, phase I metabolism was significantly decreased with respect to the initial values in gel-embedded slices with medium supplements. Slices were still able to produce phase I metabolites after 72 h, but at only about similar to 10% of the initial value. The same decrease in metabolic rate was observed in slices incubated in well plates, indicating that this decrease is due to the slices and medium rather than the incubation system. In conclusion, the biochip model was significantly improved by embedding slices in Matrigel and using proper medium supplements. This is important for in vitro testing of drug metabolism, drug-drug interactions, and (chronic) toxicity. Biotechnol. Bioeng. 2011; 108: 1404-1412. (C) 2011 Wiley Periodicals, Inc

    Comparison of Biocompatibility and Adsorption Properties of Different Plastics for Advanced Microfluidic Cell and Tissue Culture Models

    No full text
    Microfluidic technology is providing new routes toward advanced cell and tissue culture models to better understand human biology and disease. Many advanced devices have been made from poly(dimethylsiloxane) (PDMS) to enable experiments, for example, to study drug metabolism by use of precision cut liver slices, that are not possible with conventional systems. However, PDMS, a silicone rubber material, is very hydrophobic and tends to exhibit significant adsorption and absorption of hydrophobic drugs and their metabolites. Although glass could be used as an alternative, thermoplastics are better from a cost and fabrication perspective. Thermoplastic polymers (plastics) allow easy surface treatment and are generally transparent and biocompatible. This study focuses on the fabrication of biocompatible microfluidic devices with low adsorption properties from the thermoplastics poly(methyl methacrylate) (PMMA), polystyrene (PS), polycarbonate (PC), and cyclic olefin copolymer (COC) as alternatives for PDMS devices. Thermoplastic surfaces were oxidized using UV-generated ozone or oxygen plasma to reduce adsorption of hydrophobic compounds. Surface hydrophilicity was assessed over 4 weeks by measuring the contact angle of water on the surface. The adsorption of 7-ethoxycoumarin, testosterone, and their metabolites was also determined after UV-ozone treatment. Biocompatibility was assessed by culturing human hepatoma (HepG2) cells on treated surfaces. Comparison of the adsorption properties and biocompatibility of devices in different plastics revealed that only UV-ozone-treated PC and COC devices satisfied both criteria. This paper lays an important foundation that will help researchers make informed decisions with respect to the materials they select for microfluidic cell-based culture experiments
    corecore