55 research outputs found

    Protein Kinase D Regulates the Fission of Cell Surface Destined Transport Carriers from the Trans-Golgi Network

    Get PDF
    AbstractWhen a kinase inactive form of Protein Kinase D (PKD-K618N) was expressed in HeLa cells, it localized to the trans-Golgi network (TGN) and caused extensive tubulation. Cargo that was destined for the plasma membrane was found in PKD-K618N-containing tubes but the tubes did not detach from the TGN. As a result, the transfer of cargo from TGN to the plasma membrane was inhibited. We have also demonstrated the formation and subsequent detachment of cargo-containing tubes from the TGN in cells stably expressing low levels of PKD-K618N. Our results suggest that PKD regulates the fission from the TGN of transport carriers that are en route to the cell surface

    Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor–induced Nur77 expression and apoptosis

    Get PDF
    The molecular basis of thymocyte negative selection, a crucial mechanism in establishing central tolerance, is not yet resolved. Histone deacetylases (HDACs) have emerged as key transcriptional regulators in several major developmental programs. Recently, we showed that the class IIa member, HDAC7, regulates negative selection by repressing expression of Nur77, an orphan nuclear receptor involved in antigen-induced apoptosis of thymocytes. Engagement of the T cell receptor (TCR) alleviates this repression through phosphorylation-dependent nuclear exclusion of HDAC7. However, the identity of the TCR-activated kinase that phosphorylates and inactivates HDAC7 was still unknown. Here, we demonstrate that TCR-induced nuclear export of HDAC7 and Nur77 expression is mediated by activation of protein kinase D (PKD). Indeed, active PKD stimulates HDAC7 nuclear export and Nur77 expression. In contrast, inhibition of PKD prevents TCR-mediated nuclear exclusion of HDAC7 and associated Nur77 activation. Furthermore, we show that HDAC7 is an interaction partner and a substrate for PKD. We identify four serine residues in the NH2 terminus of HDAC7 as targets for PKD. More importantly, a mutant of HDAC7 specifically deficient in phosphorylation by PKD, inhibits TCR-mediated apoptosis of T cell hybridomas. These findings indicate that PKD is likely to play a key role in the signaling pathways controlling negative selection

    Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes

    Get PDF
    Cancer immunotherapy can induce durable antitumor responses. However, many patients poorly respond to such therapies. Here we describe a generic antitumor therapy that is based on the intratumor delivery of mRNA that codes for the necroptosis executioner mixed lineage kinase domain-like (MLKL) protein. This intervention stalls primary tumor growth and protects against distal and disseminated tumor formation in syngeneic mouse melanoma and colon carcinoma models. Moreover, MLKL-mRNA treatment combined with immune checkpoint blockade further improves the antitumor activity. MLKL-mRNA treatment rapidly induces T cell responses directed against tumor neo-antigens and requires CD4(+) and CD8(+) T cells to prevent tumor growth. Type I interferon signaling and Batf3-dependent dendritic cells are essential for this mRNA treatment to elicit tumor antigen-specific T cell responses. Moreover, MLKL-mRNA treatment blunts the growth of human lymphoma in mice with a reconstituted human adaptive immune system. MLKL-based treatment can thus be exploited as an effective antitumor immunotherapy

    Function and Regulation of Protein Kinase D in Oxidative Stress: A Tale of Isoforms

    No full text
    Oxidative stress is a condition that arises when cells are faced with levels of reactive oxygen species (ROS) that destabilize the homeostatic redox balance. High levels of ROS can cause damage to macromolecules including DNA, lipids, and proteins, eventually resulting in cell death. Moderate levels of ROS however serve as signaling molecules that can drive and potentiate several cellular phenotypes. Increased levels of ROS are associated with a number of diseases including neurological disorders and cancer. In cancer, increased ROS levels can contribute to cancer cell survival and proliferation via the activation of several signaling pathways. One of the downstream effectors of increased ROS is the protein kinase D (PKD) family of kinases. In this review, we will discuss the regulation and function of this family of ROS-activated kinases and describe their unique isoform-specific features, in terms of both kinase regulation and signaling output

    Protein kinase D2: a versatile player in cancer biology

    Get PDF
    Protein kinase D2 (PKD2) is a serine/threonine kinase that belongs to the PKD family of calcium-calmodulin kinases, which comprises three isoforms: PKD1, PKD2, and PKD3. PKD2 is activated by many stimuli including growth factors, phorbol esters, and G-protein-coupled receptor agonists. PKD2 participation to uncontrolled growth, survival, neovascularization, metastasis, and invasion has been documented in various tumor types including pancreatic, colorectal, gastric, hepatic, lung, prostate, and breast cancer, as well as glioma multiforme and leukemia. This review discusses the versatile functions of PKD2 from the perspective of cancer hallmarks as described by Hanahan and Weinberg. The PKD2 status, signaling pathways affected in different tumor types and the molecular mechanisms that lead to tumorigenesis and tumor progression are presented. The latest developments of small-molecule inhibitors selective for PKD/PKD2, as well as the need for further chemotherapies that prevent, slow down, or eliminate tumors are also discussed in this review.status: publishe

    Protein kinase D displays intrinsic Tyr autophosphorylation activity: insights into mechanism and regulation

    No full text
    The protein kinase D (PKD) family is regulated through multi-site phosphorylation, including autophosphorylation. For example, PKD displays in vivo autophosphorylation on Ser-742 (and Ser-738 in vitro) in the activation loop and Ser-910 in the C-tail (hPKD1 numbering). In this paper, we describe the surprising observation that PKD also displays in vitro autocatalytic activity towards a Tyr residue in the P + 1 loop of the activation segment. We define the molecular determinants for this unusual activity and identify a Cys residue (C705 in PKD1) in the catalytic loop as of utmost importance. In cells, PKD Tyr autophosphorylation is suppressed through the association of an inhibitory factor. Our findings provide important novel insights into PKD (auto)regulation.status: publishe

    Recruitment of protein kinase D to the trans-Golgi network via the first cysteine-rich domain

    No full text
    Protein kinase D (PKD) is a cytosolic protein, which upon binding to the trans-Golgi network (TGN) regulates the fission of transport carriers specifically destined to the cell surface. We have found that the first cysteine-rich domain (C1a), but not the second cysteine-rich domain (C1b), is sufficient for the binding of PKD to the TGN. Proline 155 in C1a is necessary for the recruitment of intact PKD to the TGN. Whereas C1a is sufficient to target a reporter protein to the TGN, mutation of serines 744/748 to alanines in the activation loop of intact PKD inhibits its localization to the TGN. Moreover, anti-phospho-PKD antibody, which recognizes only the activated form of PKD, recognizes the TGN-bound PKD. Thus, activation of intact PKD is important for binding to the TGN

    Loss of ADAMTS5 enhances brown adipose tissue mass and promotes browning of white adipose tissue via CREB signaling

    Get PDF
    A potential strategy to treat obesity - and the associated metabolic consequences - is to increase energy expenditure. This could be achieved by stimulating thermogenesis through activation of brown adipose tissue (BAT) and/or the induction of browning of white adipose tissue (WAT). Over the last years, it has become clear that several metalloproteinases play an important role in adipocyte biology. Here, we investigated the potential role of ADAMTS5.status: publishe
    • …
    corecore