12,702 research outputs found
Reply to Farine and Aplin: Chimpanzees choose their association and interaction partners
Farine and Aplin (1) question the validity of our study reporting group-specific social dynamics in chimpanzees (2). As alternative to our approach, Farine and Aplin advance a âprenetwork permutationâ methodology that tests against random assortment (3). We appreciate Farine and Aplinâs interest and applied their suggested approaches to our data. The new analyses revealed highly similar results to those of our initial approach. We further dispel Farine and Aplinâs critique by outlining its incompatibility to our study system, methodology, and analysis.First, when we apply the suggested prenetwork permutation to our proximity dataset, we again find significant population-level differences in association rates, while controlling for population size [as derived from Farine and Aplinâs script (4); original result, P < 0.0001; results including prenetwork permutation, P < 0.0001]. Furthermore, when we ⊠â”1To whom correspondence may be addressed. Email: ejcvanleeuwen{at}gmail.com
Combining Hebbian and reinforcement learning in a minibrain model
A toy model of a neural network in which both Hebbian learning and
reinforcement learning occur is studied. The problem of `path interference',
which makes that the neural net quickly forgets previously learned input-output
relations is tackled by adding a Hebbian term (proportional to the learning
rate ) to the reinforcement term (proportional to ) in the learning
rule. It is shown that the number of learning steps is reduced considerably if
, i.e., if the Hebbian term is neither too small nor too
large compared to the reinforcement term
Ultra-nonlocality in density functional theory for photo-emission spectroscopy
We derive an exact expression for the photo-current of photo-emission
spectroscopy using time-dependent current density functional theory (TDCDFT).
This expression is given as an integral over the Kohn-Sham spectral function
renormalized by effective potentials that depend on the exchange-correlation
kernel of current density functional theory. We analyze in detail the physical
content of this expression by making a connection between the
density-functional expression and the diagrammatic expansion of the
photo-current within many-body perturbation theory. We further demonstrate that
the density functional expression does not provide us with information on the
kinetic energy distribution of the photo-electrons. Such information can, in
principle, be obtained from TDCDFT by exactly modeling the experiment in which
the photo-current is split into energy contributions by means of an external
electromagnetic field outside the sample, as is done in standard detectors. We
find, however, that this procedure produces very nonlocal correlations between
the exchange-correlation fields in the sample and the detector.Comment: 11 pages, 11 figure
- âŠ