3 research outputs found

    A cross-sectional study in 18 patients with typical and mild forms of nemaline myopathy in the Netherlands

    Get PDF
    Nemaline myopathy (NM) is a congenital myopathy with generalised muscle weakness, most pronounced in neck flexor, bulbar and respiratory muscles. The aim of this cross-sectional study was to assess the Dutch NM patient cohort. We assessed medical history, physical examination, quality of life (QoL), fatigue severity, motor function (MFM), and respiratory muscle function. We included 18 of the 28 identified patients (13 females (11-67 years old); five males (31-74 years old)) with typical or mild NM and eight different genotypes. Nine patients (50 %) used a wheelchair, eight patients (44 %) used mechanical ventilation, and four patients (22 %) were on tube feeding. Spinal deformities were found in 14 patients (78 %). The median Medical Research Council (MRC) sum score was 38/60 [interquartile range 32-51] in typical and 48/60 [44-50] in mild NM. The experienced QoL was lower and fatigue severity was higher than reference values of the healthy population. The total MFM score was 55 % [49-94] in typical and 88 % [72-93] in mild NM. Most of the patients who performed spirometry had a restrictive lung function pattern (11/15). This identification and characterisation of the Dutch NM patient cohort is important for international collaboration and can guide the design of future clinical trials

    Respiratory muscle function in patients with nemaline myopathy

    No full text
    In this cross-sectional study, we comprehensively assessed respiratory muscle function in various clinical forms of nemaline myopathy (NM) including non-volitional tests for diaphragm function. Forty-two patients with NM were included (10 males (25-74 y/o); 32 females (11-76 y/o)). The NM forms were typical (n=11), mild (n=7), or childhood-onset with slowness of movements (n=24). Forced vital capacity (FVC) and maximal inspiratory pressure were decreased in typical NM in comparison with childhood-onset NM with slowness (32.0 [29.0-58.5] vs 81.0 [75.0-87.0]%, p<0.01, and 35.0 [24.0-55.0] vs 81.0 [65.0-102.5] cmH2O, p<0.01). Eight patients with childhood-onset NM with slowness had respiratory muscle weakness. There was a low correlation between FVC and Motor Function Measure scores (r=0.48, p<0.01). End-inspiratory diaphragm thickness and twitch mouth pressure were decreased in patients requiring home mechanical ventilation compared to non-ventilated patients with normal lung function (1.8 [1.5-2.4] vs 3.1 [2.0-4.6] mm, p=0.049, and -7.9 [-10.9- -4.0] vs -14.9 [-17.3- -12.6], p=0.04). Our results show that respiratory muscle weakness is present in all NM forms, including childhood-onset NM with slowness, and may be present irrespective of the degree of general motor function impairment. These findings highlight the importance for screening of respiratory function in patients with NM to guide respiratory management

    NEM6, KBTBD13-Related Congenital Myopathy: Myopathological Analysis in 18 Dutch Patients Reveals Ring Rods Fibers, Cores, Nuclear Clumps, and Granulo-Filamentous Protein Material

    No full text
    Nemaline myopathy type 6 (NEM6), KBTBD13-related congenital myopathy is caused by mutated KBTBD13 protein that interacts improperly with thin filaments/actin, provoking impaired muscle-relaxation kinetics. We describe muscle morphology in 18 Dutch NEM6 patients and correlate it with clinical phenotype and pathophysiological mechanisms. Rods were found in in 85% of biopsies by light microscopy, and 89% by electron microscopy. A peculiar ring disposition of rods resulting in ring-rods fiber was observed. Cores were found in 79% of NEM6 biopsies by light microscopy, and 83% by electron microscopy. Electron microscopy also disclosed granulofilamentous protein material in 9 biopsies. Fiber type 1 predominance and prominent nuclear internalization were found. Rods were immunoreactive for α-actinin and myotilin. Areas surrounding the rods showed titin overexpression suggesting derangement of the surrounding sarcomeres. NEM6 myopathology hallmarks are prominent cores, rods including ring-rods fibers, nuclear clumps, and granulofilamentous protein material. This material might represent the histopathologic epiphenomenon of altered interaction between mutated KBTBD13 protein and thin filaments. We claim to classify KBTBD13-related congenital myopathy as rod-core myopathy
    corecore