8 research outputs found

    Demonstration of a Heterogeneous Satellite Architecture During RIMPAC 2018

    Get PDF
    The Micro-Satellite Military Utility (MSMU) Project Arrangement (PA) is an agreement under the Responsive Space Capabilities (RSC) Memorandum of Understanding (MOU) involving the Departments and Ministries of Defence of Australia, Canada, Germany, Italy, Netherlands, New Zealand, Norway, United Kingdom and United States. MSMU’s charter is to inform a space enterprise that provides military users with reliable access to a broad spectrum of information in an opportunistic environment. The MSMU community participated on a non-interference basis in the biennial Rim of the Pacific (RIMPAC) exercise from 26 June to 2 August 2018. This provided an opportunity to explore the military utility of a heterogeneous space architecture of satellites including traditional government and commercial satellites, as well as micro-satellites and nanosatellites associated with the “new space” paradigm. The objective was to test the hypothesis that a heterogeneous space architecture, mostly composed of small satellites, can bring significant value to the operational theatre. This paper describes the results from the MSMU experiment, outlines the lessons learned in terms of the infrastructure required to support such an experiment, and offers insights into the military utility of the heterogeneous space architecture. It concludes that a cooperative heterogeneous space architecture does have advantages and value, and that micro-satellites and nanosatellites contribute significant capability

    VieWnaV - A 3D location based navigation and information system

    No full text
    Award winning idea in the European Satellite Navigation Competition 2010, Taiwan Regional Prize Shortlis

    Small Innovative Launcher for Europe: Achievement of the H2020 Project SMILE

    No full text
    Today's market for small satellites is expanding, but there is little capacity for affordable, dedicated launches. Launch costs of less than €50,000 per kg are required to compete with piggyback options and ride-shares; hence, cost reduction is essential. Fourteen European companies and institutes have joined forces in a Horizon2020 project called "SMall Innovative Launcher for Europe" (SMILE). The project aims at designing a launcher for satellites up to 70 kg and a European launch facility in northern Norway. Furthermore, the readiness level of critical technologies on propulsion, avionics, and cost-effective manufacturing is increased. As the development time of small satellites can be quite short, the launch rate (time-to-launch) is considered a key requirement. An effective and efficient organisation, including supply chain, is needed to maintain the launch cadence and to reduce operational cost, both of which are needed to deliver a commercially viable service. Both liquid and hybrid rocket engines are considered for this small launcher: a high-performance LOX/kerosene engine and a low-cost H2O2/HTPB engine. The reusable liquid engine, for which hot firing tests are scheduled in 2017, uses a ceramic-based, transpiration cooled combustion chamber and a 3D-printed injector. The H2O2/HTPB hybrid engine technology offers simplicity of the architecture and uses green, storable propellants. Upgrades from the existing engine are then considered, notably by increasing the performances and reducing the dry mass. With a choice of two types of engines, different configurations are analysed in a two- or three-stage set-up using a multidisciplinary design approach including steps from geometry set-up to trajectory optimisation. Preliminary cost estimations and readiness levels are used as complementary metrics. A trade-off is performed to select materials and structural elements to withstand the most demanding loading cases. To minimise the mass, composite sandwich structures are proposed. A suitable automated manufacturing process is then needed for cost-effectiveness. To accommodate both CubeSats and micro-satellites, a flexible payload adapter is designed. The use of COTS for the avionics is foreseen to reduce cost, with low-cost MEMS gyroscopes competing with high-performance fibre optic gyroscopes. High-performance multi-processor System-On-chips can Combine processing power, real-time control, and high number of interfaces into a single board. Finally, a new launch site design, including preliminary ground and flight safety analysis, is performed for the launch base in Northern Norway, currently already used for sounding rockets launches

    Small Innovative Launcher for Europe

    No full text
    The market for small satellites is expected to increase substantially in the coming years, but there is little capacity to launch them affordably. No operational dedicated launcher for small satellites exists today. Small satellites, launched as secondary payloads, are entirely dependent on the constraints set by the primary payload, such as launch date and target orbit. Launch costs of less than €50,000 per kg of payload are required in order to directly compete with piggy-back ride shares. With a dedicated launcher a higher cost per kg can be accepted for payloads which need to be delivered timely and accurately to a desired orbit. --- A consortium of 13 companies and institutes are joining forces in a Horizon 2020 work programme to design a dedicated small launcher to be built in and launched from Europe. The project is called “SMall Innovative Launcher for Europe” (SMILE) starting in 2016. The SMILE project aims at a combined research approach into a new innovative European launcher for an emerging market of small satellites up to 50 kg using a multidisciplinary design and optimisation approach strengthened by the demonstration of critical technologies for cost-effective solutions and complemented with the design of a European-based launch capability from Andøya (Norway). For the intended market, cost reduction is essential. One option to reduce cost is to apply reusability of one or more of the stages. Cost can also be reduced by applying commercial industry-grade components. Another means of cost reduction is through volume production. Finally, the production process can be optimized for cost, e.g. automated manufacturing for composite parts and 3D-printing for metallic parts. Critical launcher technologies in various expertise areas will be developed in SMILE, but this paper focusses on the rocket engine developments and their impact on cost reduction and design since the engines are the most critical and expensive parts of a launcher. For the rocket propulsion system, both hybrid engines and reusable liquid engines are assessed

    Innovative Small Launcher

    Get PDF
    The market for small satellites is expected to increase substantially in the coming years, but there is little capacity to launch them affordably. No operational dedicated launcher for small satellites exists today. Small satellites, launched as secondary payloads, are entirely dependent on the constraints set by the primary payload, such as launch date and target orbit. Launch costs of less than €50,000 per kg of payload are required in order to directly compete with piggy-back ride shares. With a dedicated launcher a higher cost per kg can be accepted for payloads which need to be delivered timely and accurately to a desired orbit. --- The SMILE project aims at a combined research approach into a new innovative European launcher for an emerging market of small satellites up to 50 kg using a multidisciplinary design and optimisation approach strengthened by the demonstration of critical technologies for cost-effective solutions and complemented with the design of a European-based launch capability from Andøya (Norway). Critical launcher technologies in various expertise areas will be developed in SMILE, but this paper focusses on the rocket engine developments and their impact on cost reduction and design since the engines are the most critical and expensive parts of a launcher. For the rocket engines, both hybrid engines and reusable liquid engines are assessed

    Innovative European Launcher Concept SMILE

    No full text
    The demand for small satellites is rapidly increasing and a market is forming for such low-mass payloads. Conventional launch providers however offer restricted flexibility and capacity for affordable launches. Launch costs of €50,000 per kg are required to compete with ride-shares. Therefore, cost reduction is essential, to be achieved via reusable components, low cost components, volume production and optimised manufacturing. Fourteen European SMEs and research institutes are joining forces in the European research program "SMall Innovative Launcher for Europe" (SMILE). The project aims at designing a launcher for satellites up to 50 kg and a European-based launch facility at Andøya, as well as demonstrating critical technologies on propulsion, avionics, and manufacturing of cost-effective solutions. For propulsion, a trade-off between liquid and hybrid engines is considered to realise the project's objectives in terms of performance and economic viability

    Small Innovative Launcher for Europe: Achievement of the H2020 Project SMILE

    No full text
    Today's market for small satellites is expanding, but there is little availability of affordable launches. Launch costs of around €50,000 per kg are required to compete with ride-shares. Hence, production and operation costs are considered essential. Fourteen European companies and institutes have joined forces in a Horizon2020 project called "SMall Innovative Launcher for Europe" (SMILE). The project aims at designing a launcher for satellites of about 50 kg and a European launch facility in northern Norway. Critical technologies on propulsion, avionics, and manufacturing of cost-effective solutions are developed in order to increase the readiness level of a future European launcher
    corecore