30 research outputs found

    Polarized sphingolipid transport from the subapical compartment:Evidence for distinct sphingolipid domains

    Get PDF
    In polarized HepG2 cells, the sphingolipids glucosylceramide and sphingomyelin (SM), transported along the reverse transcytotic pathway, are sorted in subapical compartments (SACs), and subsequently targeted to either apical or basolateral plasma membrane domains, respectively. In the present study, evidence is provided that demonstrates that these sphingolipids constitute separate membrane domains at the luminal side of the SAC membrane. Furthermore, as revealed by the use of various modulators of membrane trafficking, such as calmodulin antagonists and dibutyryl-cAMP, it is shown that the fate of these separate sphingolipid domains is regulated by different signals, including those that govern cell polarity development. Thus under conditions that stimulate apical plasma membrane biogenesis, SM is rerouted from a SAC-to-basolateral to a SAC-to-apical pathway. The latter pathway represents the final leg in the transcytotic pathway, followed by the transcytotic pIgR–dIgA protein complex. Interestingly, this pathway is clearly different from the apical recycling pathway followed by glucosylceramide, further indicating that randomization of these pathways, which are both bound for the apical membrane, does not occur. The consequence of the potential coexistence of separate sphingolipid domains within the same compartment in terms of “raft” formation and apical targeting is discussed

    Polarized sphingolipid transport from the subapical compartment changes during cell polarity development

    Get PDF
    The subapical compartment (SAC) plays an important role in the polarized transport of proteins and lipids. In hepatoma-derived HepG2 cells, fluorescent analogues of sphingomyelin and glucosylceramide are sorted in the SAC. Here, evidence is provided that shows that polarity development is regulated by a transient activation of endogenous protein kinase A and involves a transient activation of a specific membrane transport pathway, marked by the trafficking of the labeled sphingomyelin, from the SAC to the apical membrane. This protein kinase A–regulated pathway differs from the apical recycling pathway, which also traverses SAC. After reaching optimal polarity, the direction of the apically activated pathway switches to one in the basolateral direction, without affecting the apical recycling pathway

    The subapical compartment: a novel sorting centre?

    No full text
    Establishment of plasma membrane polarity involves numerous intracellular sorting events. In the past few years, it has become apparent that there is a subapical, non-Golgi compartment located in the hub of the sorting pathways involved. This 'subapical compartment', which probably consists of a heterogeneous subset of functionally distinct domains related to endosomes, contains some-well-characterized components involved in polarity-dependent sorting and targeting of proteins and lipids. This article discusses the evidence supporting the existence of such a compartment, its biogenesis and its role in cell polarity

    Violin and viola students of Darrin E. McCann

    No full text
    Program too lengthy for inclusionDigital audio of these performances is not yet available. You may submit a request for these recordings to be digitized and made available at this site within 10 work days at http://lib.asu.edu/music/services/perfdigitizeform?identifier=1989/3-25B&title=Violin+and+viola+students+of+Darrin+E.+McCan

    In search of lipid translocases and their biological functions

    Get PDF
    In plasma membranes, lipids distribute asymmetrically across the bilayer, a process that requires proteins. Recent work identified novel lipid translocators in yeast, and their activity was functionally correlated to endocytosis, thus boosting investigations on identity, mechanism, and function of lipid translocases

    Role of rab proteins in epithelial membrane traffic

    No full text
    Small GTPase rab proteins play an important role in various aspects of membrane traffic, including cargo selection, vesicle budding, vesicle motility, tethering, docking, and fusion. Recent data suggest also that rabs, and their divalent effector proteins, organize organelle subdomains and as such may define functional organelle identity. Most rabs are ubiquitously expressed. However, some rabs are preferentially expressed in epithelial cells where they appear intimately associated with the epithelial-specific transcytotic pathway and/or tight junctions. This review discusses the role of rabs in epithelial membrane transport

    Calmodulin modulates hepatic membrane polarity by protein kinase C-sensitive steps in the basolateral endocytic pathway

    No full text
    Membrane polarity is maintained by a complex intermingling of various trafficking pathways, including basolateral and apical endocytosis. The present work was undertaken to better define the role of basolateral endocytic transport in apical membrane homeostasis. When polarized HepG2 hepatoma cells were incubated with calmodulin antagonists, the cells lost their polarity, as reflected by an inhibition of lipid transport of a fluorescent sphingomyelin to the apical membrane and an impediment of its recycling to the basolateral membrane. Instead, an accumulation of the lipid in dilated early endosomal compartments was observed, presumably due to a frustration of vesiculation. Interestingly, lipid transport to the apical pole, lipid recycling to the basolateral membrane and cell polarity were reestablished, while dilated compartments disappeared, when the cells were simultaneously treated with specific inhibitors of protein kinase C (PKC). Consistently, following activation of PKC, extensive dilation/vacuolation of early sorting endosomes was observed, very similar as seen upon treatment with calmodulin antagonists. Thus, the results indicate that membrane trafficking at early steps of the basolateral endocytic pathway in HepG2 cells is regulated by an intricate interplay between calmodulin and PKC. This interference, although not affecting endocytosis as such, compromises cell polarity by impeding membrane trafficking from early endosomes to the apical membrane. (c) 2005 Elsevier Inc. All rights reserved
    corecore