21 research outputs found

    Fate, activity, and impact of ingested bacteria within the human gut microbiota

    Get PDF
    The human gut contains a highly diverse microbial community that is essentially an open ecosystem, despite being deeply embedded within the human body. Food-associated fermentative bacteria, including probiotics, are major sources of ingested bacteria that may temporarily complement resident microbial communities, thus forming part of our transient microbiome. Here, we review data on the fate and activity of ingested bacteria and, in particular, lactobacilli and bifidobacteria in the gastrointestinal (GI) tract and their impact on the composition and metabolism of the gut microbiome with a focus on data from clinical studies. In addition, we discuss the mechanisms involved and the potential impact on the host's health

    Formation and detoxification of reactive intermediates in the metabolism of chlorinated ethenes

    No full text
    Short-chain halogenated aliphatics, such as chlorinated ethenes, constitute a large group of priority pollutants. This paper gives an overview on the chemical and physical properties of chlorinated aliphatics that are critical in determining their toxicological characteristics and recalcitrance to biodegradation. The toxic effects and principle metabolic pathways of halogenated ethenes in mammals are briefly discussed. Furthermore, the bacterial degradation of halogenated compounds is reviewed and it is described how product toxicity may explain why most chlorinated ethenes are only degraded cometabolically under aerobic conditions. The cometabolic degradation of chlorinated ethenes by oxygenase-producing microorganism has been extensively studied. The physiology and bioremediation potential of methanotrophs has been well characterized and an overview of the available data on these organisms is presented. The sensitivity of methanotrophs to product toxicity is a major limitation for the transformation of chlorinated ethenes by these organisms. Most toxic effects arise from the inability to detoxify the reactive chlorinated epoxyethanes occurring as primary metabolites. Therefore, the last part of this review focuses on the metabolic reactions and enzymes that are involved in the detoxification of epoxides in mammals. A key role is played by glutathione S-transferases. Furthermore, an overview is presented on the current knowledge about bacterial enzymes involved in the metabolism of epoxides. Such enzymes might be useful for detoxifying chlorinated ethene epoxides and an example of a glutathione S-transferase with activity for dichloroepoxyethane is highlighted. (C) 2001 Elsevier Science B.V. All rights reserved

    Bacterial degradation of 3-chloroacrylic acid and the characterization of cis- and trans-specific dehalogenases

    No full text
    A coryneform bacterium that is able to utilize cis- and trans-3-chloroacrylic acid as sole carbon source for growth was isolated from freshwater sediment. The organism was found to produce two inducible dehalogenases, one specific for the cis- and the other for trans-3-chloroacrylic acid. Both dehalogenases were purified to homogeneity from cells induced for dehalogenase synthesis with 3-chlorocrotonic acid. The enzymes produced muconic acid semialdehyde (3-oxopropionic acid) from their respective 3-chloroacrylic acid substrate. No other substrates were found. The cis-3-chloroacrylic acid dehalogenase consisted of two polypeptide chains of a molecular weight 16.2 kDa. Trans-3-chloroacrylic acid dehalogenase was a protein with subunits of 7.4 and 8.7 kDa. The subunit and amino acid compositions and the N-terminal amino acid sequences of the enzymes indicate that they are not closely related.

    Effect of Chlorinated Ethene Conversion on Viability and Activity of Methylosinus trichosporium OB3b

    Get PDF
    The effect of transformation of chlorinated ethenes on the cell viability of Methylosinus trichosporium OB3b was investigated. A comparison of the loss of viability with the decrease in transformation rates showed that for the monooxygenase-mediated transformation of all chlorinated ethenes except vinyl chloride the decrease in cell viability was the predominant toxic effect.

    Time-resolved genetic responses of Lactococcus lactis to a dairy environment

    No full text
    Lactococcus lactis is one of main bacterial species found in mixed dairy starter cultures for the production of semi-hard cheese. Despite the appreciation that mixed cultures are essential for the eventual properties of the manufactured cheese the vast majority of studies on L. lactis were carried out in laboratory media with a pure culture. In this study we applied an advanced recombinant in vivo expression technology (R-IVET) assay in combination with a high-throughput cheese-manufacturing protocol for the identification and subsequent validation of promoter sequences specifically induced during the manufacturing and ripening of cheese. The system allowed gene expression measurements in an undisturbed product environment without the use of antibiotics and in combination with a mixed strain starter culture. The utilization of bacterial luciferase as reporter enabled the real-time monitoring of gene expression in cheese for up to 200 h after the cheese-manufacturing process was initiated. The results revealed a number of genes that were clearly induced in cheese such as cysD, bcaP, dppA, hisC, gltA, rpsE, purL, amtB as well as a number of hypothetical genes, pseudogenes and notably genetic elements located on the non-coding strand of annotated open reading frames. Furthermore genes that are likely to be involved in interactions with bacteria used in the mixed strain starter culture were identified

    Detoxification of reactive intermediates during microbial metabolism of halogenated compounds

    No full text
    The reactivity and toxicity of metabolic intermediates that are generated by initial biotransformation reactions can be a major limiting factor for biodegradation of halogenated organic compounds. Recent work on the conversion of haloalkanes, chloroaromatics and chloroethenes indicates that microorganisms may become less sensitive to toxic effects either by using novel pathways that circumvent the generation of reactive intermediates or by producing modified enzymes that decrease the toxicity of such compounds.
    corecore