2 research outputs found

    Cohort profile of Acutelines:a large data/biobank of acute and emergency medicine

    Get PDF
    Purpose Research in acute care faces many challenges, including enrolment challenges, legal limitations in data sharing, limited funding and lack of singular ownership of the domain of acute care. To overcome these challenges, the Center of Acute Care of the University Medical Center Groningen in the Netherlands, has established a de novo data, image and biobank named ‘Acutelines’.Participants Clinical data, imaging data and biomaterials (ie, blood, urine, faeces, hair) are collected from patients presenting to the emergency department (ED) with a broad range of acute disease presentations. A deferred consent procedure (by proxy) is in place to allow collecting data and biomaterials prior to obtaining written consent. The digital infrastructure used ensures automated capturing of all bed-side monitoring data (ie, vital parameters, electrophysiological waveforms) and securely importing data from other sources, such as the electronic health records of the hospital, ambulance and general practitioner, municipal registration and pharmacy. Data are collected from all included participants during the first 72 hours of their hospitalisation, while follow-up data are collected at 3 months, 1 year, 2 years and 5 years after their ED visit.Findings to date Enrolment of the first participant occurred on 1 September 2020. During the first month, 653 participants were screened for eligibility, of which 180 were approached as potential participants. In total, 151 (84%) provided consent for participation of which 89 participants fulfilled criteria for collection of biomaterials.Future plans The main aim of Acutelines is to facilitate research in acute medicine by providing the framework for novel studies and issuing data, images and biomaterials for future research. The protocol will be extended by connecting with central registries to obtain long-term follow-up data, for which we already request permission from the participant.Trial registration number NCT04615065

    Detection of Early Esophageal Neoplastic Barrett Lesions with Quantified Fluorescence Molecular Endoscopy Using Cetuximab-800CW

    Get PDF
    Esophageal adenocarcinoma causes 6% of cancer-related deaths worldwide. Near-infrared fluorescence molecular endoscopy (NIR-FME) uses a tracer that targets overexpressed proteins. In this study, we aimed to investigate the feasibility of an epidermal growth factor receptor (EGFR)–targeted tracer, cetuximab-800CW, to improve detection of early-stage esophageal adenocarcinoma. Methods: We validated EGFR expression in 73 esophageal tissue sections. Subsequently, we topically administered cetuximab-800CW and performed high-definition white-light endoscopy (HD-WLE), narrow-band imaging, and NIR-FME in 15 patients with Barrett esophagus (BE). Intrinsic fluorescence values were quantified using multidiameter single-fiber reflectance and single-fiber fluorescence spectroscopy. Back-table imaging, histopathologic examination, and EGFR immunohistochemistry on biopsy samples collected during NIR-FME procedures were performed and compared with in vivo imaging results. Results: Immunohistochemical preanalysis showed high EGFR expression in 67% of dysplastic tissue sections. NIR-FME visualized all 12 HD-WLE–visible lesions and 5 HD-WLE–invisible dysplastic lesions, with increased fluorescence signal in visible dysplastic BE lesions compared with nondysplastic BE as shown by multidiameter single-fiber reflectance/single-fiber fluorescence, reflecting a target-to-background ratio of 1.5. Invisible dysplastic lesions also showed increased fluorescence, with a target-to-background ratio of 1.67. Immunohistochemistry analysis showed EGFR overexpression in 16 of 17 (94%) dysplastic BE lesions, which all showed fluorescence signal. Conclusion: This study has shown that NIR-FME using cetuximab-800CW can improve detection of dysplastic lesions missed by HD-WLE and narrow-band imaging.</p
    corecore