3 research outputs found

    Surface Engineering Methods for Powder Bed Printed Tablets to Optimize External Smoothness and Facilitate the Application of Different Coatings

    Get PDF
    In a previous attempt to achieve ileo-colonic targeting of bovine intestinal alkaline phosphatase (BIAP), we applied a pH-dependent coating, the ColoPulse coating, directly on powder bed printed (PBP) tablets. However, the high surface roughness necessitated an additional sub-coating layer [Nguyen, K. T. T., Pharmaceutics 2022]. In this study, we aimed to find a production method for PBP tablets containing BIAP that allows the direct application of coating systems. Alterations of the printing parameters, binder content, and printing layer height, when combined, were demonstrated to create visually less rough PBP tablets. The addition of ethanol vapor treatment further improved the surface’s smoothness significantly. These changes enabled the direct application of the ColoPulse, or enteric coating, without a sub-coating. In vitro release testing showed the desired ileo-colonic release or upper-intestinal release for ColoPulse or enteric-coated tablets, respectively. Tablets containing BIAP, encapsulated within an inulin glass, maintained a high enzymatic activity (over 95%) even after 2 months of storage at 2–8 °C. Importantly, the coating process did not affect the activity of BIAP. In this study, we demonstrate, for the first time, the successful production of PBP tablets with surfaces that are directly coatable with the ColoPulse coating while preserving the stability of the encapsulated biopharmaceutical, BIAP.</p

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Formulation of a 3D Printed Biopharmaceutical: The Development of an Alkaline Phosphatase Containing Tablet with Ileo-Colonic Release Profile to Treat Ulcerative Colitis

    Get PDF
    Powder bed printing is a 3D-printing process that creates freeform geometries from powders, with increasing traction for personalized medicine potential. Little is known about its applications for biopharmaceuticals. In this study, the production of tablets containing alkaline phosphatase using powder bed printing for the potential treatment of ulcerative colitis (UC) was investigated, as was the coating of these tablets to obtain ileo-colonic targeting. The printing process was studied, revealing line spacing as a critical factor affecting tablet physical properties when using hydroxypropyl cellulose as the binder. Increasing line spacing yielded tablets with higher porosity. The enzymatic activity of alkaline phosphatase (formulated in inulin glass) remained over 95% after 2 weeks of storage at 45 &deg;C. The subsequent application of a colonic targeting coating required a PEG 1500 sub-coating. In vitro release experiments, using a gastrointestinal simulated system, indicated that the desired ileo-colonic release was achieved. Less than 8% of the methylene blue, a release marker, was released in the terminal ileum phase, followed by a fast release in the colon phase. No significant impact from the coating process on the enzymatic activity was found. These tablets are the first to achieve both biopharmaceutical incorporation in powder bed printed tablets and ileo-colonic targeting, thus might be suitable for on-demand patient-centric treatment of UC
    corecore