371 research outputs found

    Fluorine-19 magnetic resonance angiography of the mouse.

    Get PDF
    PURPOSE: To implement and characterize a fluorine-19 ((19)F) magnetic resonance imaging (MRI) technique and to test the hypothesis that the (19)F MRI signal in steady state after intravenous injection of a perfluoro-15-crown-5 ether (PCE) emulsion may be exploited for angiography in a pre-clinical in vivo animal study. MATERIALS AND METHODS: In vitro at 9.4T, the detection limit of the PCE emulsion at a scan time of 10 min/slice was determined, after which the T(1) and T(2) of PCE in venous blood were measured. Permission from the local animal use committee was obtained for all animal experiments. 12 µl/g of PCE emulsion was intravenously injected in 11 mice. Gradient echo (1)H and (19)F images were obtained at identical anatomical levels. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were determined for 33 vessels in both the (19)F and (1)H images, which was followed by vessel tracking to determine the vessel conspicuity for both modalities. RESULTS: In vitro, the detection limit was ∼400 µM, while the (19)F T(1) and T(2) were 1350±40 and 25±2 ms. The (19)F MR angiograms selectively visualized the vasculature (and the liver parenchyma over time) while precisely coregistering with the (1)H images. Due to the lower SNR of (19)F compared to (1)H (17±8 vs. 83±49, p<0.001), the (19)F CNR was also lower at 15±8 vs. 52±35 (p<0.001). Vessel tracking demonstrated a significantly higher vessel sharpness in the (19)F images (66±11 vs. 56±12, p = 0.002). CONCLUSION: (19)F magnetic resonance angiography of intravenously administered perfluorocarbon emulsions is feasible for a selective and exclusive visualization of the vasculature in vivo

    Fluorine MR Imaging of Inflammation in Atherosclerotic Plaque in Vivo.

    Get PDF
    PURPOSE: To preliminarily test the hypothesis that fluorine 19 ((19)F) magnetic resonance (MR) imaging enables the noninvasive in vivo identification of plaque inflammation in a mouse model of atherosclerosis, with histologic findings as the reference standard. MATERIALS AND METHODS: The animal studies were approved by the local animal ethics committee. Perfluorocarbon (PFC) emulsions were injected intravenously in a mouse model of atherosclerosis (n = 13), after which (19)F and anatomic MR imaging were performed at the level of the thoracic aorta and its branches at 9.4 T. Four of these animals were imaged repeatedly (at 2-14 days) to determine the optimal detection time. Repeated-measures analysis of variance with a Tukey test was applied to determine if there was a significant change in (19)F signal-to-noise ratio (SNR) of the plaques and liver between the time points. Six animals were injected with a PFC emulsion that also contained a fluorophore. As a control against false-positive results, wild-type mice (n = 3) were injected with a PFC emulsion, and atherosclerotic mice were injected with a saline solution (n = 2). The animals were sacrificed after the last MR imaging examination, after which high-spatial-resolution ex vivo MR imaging and bright-field and immunofluorescent histologic examination were performed. RESULTS: (19)F MR signal was detected in vivo in plaques in the aortic arch and its branches. The SNR was found to significantly increase up to day 6 (P < .001), and the SNR of all mice at this time point was 13.4 ± 3.3. The presence of PFC and plaque in the excised vessels was then confirmed both through ex vivo (19)F MR imaging and histologic examination, while no signal was detected in the control animals. Immunofluorescent histologic findings confirmed the presence of PFC in plaque macrophages. CONCLUSION: (19)F MR imaging allows the noninvasive in vivo detection of inflammation in atherosclerotic plaques in a mouse model of atherosclerosis and opens up new avenues for both the early detection of vulnerable atherosclerosis and the elucidation of inflammation mechanisms in atherosclerosis

    Ultra-high-resolution 3D imaging of atherosclerosis in mice with synchrotron differential phase contrast: a proof of concept study.

    Get PDF
    The goal of this study was to investigate the performance of 3D synchrotron differential phase contrast (DPC) imaging for the visualization of both macroscopic and microscopic aspects of atherosclerosis in the mouse vasculature ex vivo. The hearts and aortas of 2 atherosclerotic and 2 wild-type control mice were scanned with DPC imaging with an isotropic resolution of 15 μm. The coronary artery vessel walls were segmented in the DPC datasets to assess their thickness, and histological staining was performed at the level of atherosclerotic plaques. The DPC imaging allowed for the visualization of complex structures such as the coronary arteries and their branches, the thin fibrous cap of atherosclerotic plaques as well as the chordae tendineae. The coronary vessel wall thickness ranged from 37.4 ± 5.6 μm in proximal coronary arteries to 13.6 ± 3.3 μm in distal branches. No consistent differences in coronary vessel wall thickness were detected between the wild-type and atherosclerotic hearts in this proof-of-concept study, although the standard deviation in the atherosclerotic mice was higher in most segments, consistent with the observation of occasional focal vessel wall thickening. Overall, DPC imaging of the cardiovascular system of the mice allowed for a simultaneous detailed 3D morphological assessment of both large structures and microscopic details

    Characterization of perfluorocarbon relaxation times and their influence on the optimization of fluorine-19 MRI at 3 tesla.

    Get PDF
    To characterize and optimize javax.xml.bind.JAXBElement@7524a985 F MRI for different perfluorocarbons (PFCs) at 3T and quantify the loss of acquisition efficiency as a function of different temperature and cellular conditions. The T javax.xml.bind.JAXBElement@1ef4ca84 and T javax.xml.bind.JAXBElement@295b7e6f relaxation times of the commonly used PFCs perfluoropolyether (PFPE), perfluoro-15-crown-5-ether (PFCE), and perfluorooctyl bromide (PFOB) were measured in phantoms and in several different conditions (cell types, presence of fixation agent, and temperatures). These relaxation times were used to optimize pulse sequences through numerical simulations. The acquisition efficiency in each cellular condition was then determined as the ratio of the signal after optimization with the reference relaxation times and after optimization with its proper relaxation times. Finally, PFC detection limits were determined. The loss of acquisition efficiency due to parameter settings optimized for the wrong temperature and cellular condition was limited to 13%. The detection limits of all PFCs were lower at 24 °C than at 37 °C and varied from 11.8 ± 3.0 mM for PFCE at 24 °C to 379.9 ± 51.8 mM for PFOB at 37 °C. Optimizing javax.xml.bind.JAXBElement@30187e57 F pulse sequences with a known phantom only leads to moderate loss in acquisition efficiency in cellular conditions that might be encountered in in vivo and in vitro experiments. Magn Reson Med 77:2263-2271, 2017. © 2016 International Society for Magnetic Resonance in Medicine

    A Journey to the Role of Facilitator: Personal Stories Unfolding Alongside World Trends

    Full text link
    Simulations and games for learning require expert management drawing on specialist skills and knowledge. Dick Duke’s 1969 [1] invitation to a ‘conversation about simulation’, initiated a process that has generated 50 years of thoughtful analysis of the design and use of simulations. In the early stages, facilitation was not high on agendas for discussion or research. However, the role of the facilitator has been receiving more attention, as the importance of effective management of simulation events receives more recognition. Awareness of the complexity of human interactions, and the ways in which simulation can both replicate and unsettle them, is leading to more research and attention being paid to the role of the facilitator. Using a trajectory of personal experiences beginning in 1969, this paper uses an auto-ethnographic approach [2] to review our own development as facilitators of simulations and games, alongside an exploration of the broader, evolving understanding of the role, and the increasing complexity involved in ensuring facilitators contribute effectively to current learning contexts

    Three-Dimensional Self-Navigated T2 Mapping for the Detection of Acute Cellular Rejection After Orthotopic Heart Transplantation.

    Get PDF
    T2 mapping is a magnetic resonance imaging technique measuring T2 relaxation time, which increases with the myocardial tissue water content. Myocardial edema is a component of acute cellular rejection (ACR) after heart transplantation. This pilot study compares in heart transplantation recipients a novel high resolution 3-dimensional (3D) T2-mapping technique with standard 2-dimensional (2D) T2-mapping for ACR detection. Consecutive asymptomatic patients (n = 26) underwent both 3D T2 mapping and reference 2D T2 mapping magnetic resonance imaging on the day of endomyocardial biopsy (EMB). 3D T2 maps were obtained at an isotropic spatial resolution of 1.72 mm (voxel volume 5.1 mm(3)). 2D and 3D maps were matched anatomically, and maximum segmental T2 values were compared blinded to EMB results. In addition, all 3D T2 maps were rendered as 3D images and inspected for foci of T2 elevation. T2 values of segments from 2D and reformatted 3D T2 maps agreed (p > 0.5). The highest 2D segmental T2 values were 49.9 ± 4.0 ms (no ACR = 0R, n = 18), 48.9 ± 0.8 ms (mild ACR = 1R, n = 3), and 65.0 ms (moderate ACR = 2R). Rendered 3D T2 maps of cases with 1R showed foci with significantly elevated T2 signal (T2 = 58.2 ± 3.6 ms); 5 cases (28%) in the 0R group showed foci with increased T2 values (>2 SD above adjacent tissue) that were not visible on the 2D T2 maps. This pilot study in a small cohort suggests equivalency of standard segmental analysis between 3D and 2D T2-mapping. 3D T2 mapping provides a spatial resolution that permits detection of foci with elevated T2 in patients with mild ACR
    corecore