365 research outputs found

    Chiral symmetry restoration in linear sigma models with different numbers of quark flavors

    Full text link
    Chiral symmetry restoration at nonzero temperature is studied in the framework of the O(4) linear sigma model and the U(N_f)_r x U(N_f)_l linear sigma model with N_f=2,3, and 4 quark flavors. We investigate the temperature dependence of the masses of the scalar and pseudoscalar mesons, and the non-strange, strange, and charm condensates within the Hartree approximation as derived from the Cornwall-Jackiw-Tomboulis formalism. We find that the masses of the non-strange and strange mesons at nonzero temperature depend sensitively on the particular symmetry of the model and the number of light quark flavors N_f. On the other hand, due to the large charm quark mass, neither do charmed mesons significantly affect the properties of the other mesons, nor do their masses change appreciably in the temperature range around the chiral symmetry restoration temperature. In the chiral limit, the transition temperatures for chiral symmetry restoration are surprisingly close to those found in lattice QCD.Comment: 28 pages, 8 figure

    Nonequilibrium evolution of Phi**4 theory in 1+1 dimensions in the 2PPI formalism

    Get PDF
    We consider the out-of-equilibrium evolution of a classical condensate field and its quantum fluctuations for a Phi**4 model in 1+1 dimensions with a symmetric and a double well potential. We use the 2PPI formalism and go beyond the Hartree approximation by including the sunset term. In addition to the mean field phi= the 2PPI formalism uses as variational parameter a time dependent mass M**2(t) which contains all local insertions into the Green function. We compare our results to those obtained in the Hartree approximation. In the symmetric Phi**4 theory we observe that the mean field shows a stronger dissipation than the one found in the Hartree approximation. The dissipation is roughly exponential in an intermediate time region. In the theory with spontaneous symmetry breaking, i.e., with a double well potential, the field amplitude tends to zero, i.e., to the symmetric configuration. This is expected on general grounds: in 1+1 dimensional quantum field theory there is no spontaneous symmetry breaking for T >0, and so there should be none at finite energy density (microcanonical ensemble), either. Within the time range of our simulations the momentum spectra do not thermalize and display parametric resonance bands.Comment: 14 pages, 18 encapsulated postscript figures; v2 minor changes, new appendix, accepted for publication in Phys.Rev.

    Are Atypical Nevi a Risk Factor for Uveal Melanoma? A Case-Control Study

    Get PDF
    Atypical nevi and other potential risk factors for uveal melanoma were studied in 109 uveal melanoma patients and 149 controls. Information concerning employment, medical history, drug use, family history of cancer, excess sun exposure, and blistering sunburn before and after the age of 15 was obtained. A total skin examination was performed and skin type, hair color, eye color, freckles, actinic damage, the total number of common acquired nevi, and the number of clinically atypical nevi were noted.More atypical nevi were found in uveal melanoma patients than in controls (age- and sex-adjusted odds ratio of 2.9 [95% confidence interval 1.2-6.3] for one or two atypical nevi versus none; odds ratio of 5.1 [95% CI 1.3 -20.0] for three or more atypical nevi versus none). Light skin types and freckling also prevailed in uveal melanoma cases.In our study, atypical nevi are more common in uveal melanoma patients than in controls. Further studies will have to indicate whether risk factors comparable to those for cutaneous melanoma really exist for uveal melanoma

    Shell-model calculations for the three-nucleon system

    Get PDF
    We use Faddeev's decomposition to solve the shell-model problem for three nucleons. The dependence on harmonic-oscillator excitations allowed in the model space, up to 32Ω32 \hbar\Omega in the present calculations, and on the harmonic-oscillator frequency is studied. Effective interactions derived from Nijmegen II and Reid93 potentials are used in the calculations. The binding energies obtained are close to those calculated by other methods. The structure of the Faddeev equations is discussed and a simple formula for matrix elements of the permutation operators in a harmonic-oscillator basis is given. The Pauli principle is properly treated in the calculations.Comment: 11 pages. REVTEX. 6 PostScript figure

    Could Postnatal Women's Groups Be Used to Improve Outcomes for Mothers and Children in High-Income Countries? A Systematic Review

    Get PDF
    Introduction Participatory postnatal women's groups have been shown to have a significant impact on maternal and neonatal mortality in low-income countries. However, it is not clear whether this approach can be translated to high-income countries (HICs). We conducted a systematic review to answer the question: "Can postnatal women's groups improve health outcomes for mothers and children in high-income countries?" Methods MEDLINE, EMBASE and Cochrane databases were searched for randomised controlled trials testing any group-based intervention during the postnatal period, in HICs. No limitations were applied to stated outcomes. Results Nine trials, including 3029 women, fulfilled the criteria. Group-based interventions, facilitated by health professionals, ranged from didactic to participant-led. Three trials addressed postnatal depression, one addressed physical activity, whilst the remainder looked at multiple health or social outcomes. Three trials reported a significant association between their intervention and at least one outcome measure. Study limitations included poor and inequitable intervention uptake, low participant retention, small sample size and incomplete intervention description. Discussion This review found limited and incompletely described evidence testing the use of postnatal group-based interventions to improve health outcomes in HICs. Promising results were reported when the obstacles of sample size and group attendance were overcome. Studies reporting positive impacts on primary outcomes reported higher attendance rates and involved a psychoeducational or cognitive behavioural component in their group approaches. Further research should design and evaluate implementation strategies, assess the use of lay support workers in community settings to improve attendance and retention, and examine the effect of the group environment on outcomes

    Resonance production in heavy ion collisions

    Full text link
    Recent results of resonance production from RHIC at sNN=\sqrt{s_{\rm NN}} = 200 GeV and SPS at sNN=\sqrt{s_{\rm NN}} = 17 GeV are presented and discussed in terms of the evolution and freeze-out conditions of a hot and dense fireball medium. Yields and spectra are compared with thermal model predictions at chemical freeze-out. Deviations in the low transverse momentum region of the resonance spectrum of the hadronic decay channel, suggest a strongly interaction hadronic phase between chemical and kinetic freeze-out. Microscopic models including resonance rescattering and regeneration are able to describe the trend of the data. The magnitude of the regeneration cross sections for different inverse decay channels are discussed. Model calculations which include elastic hadronic interactions between chemical freeze-out and thermal freeze-out based on the K(892)/K and Λ\Lambda(1520)/Λ\Lambda ratios suggest a time between two freeze-outs surfaces of Δτ>\Delta \tau> 4 fm/c. The difference in momentum distributions and yields for the ϕ\phi(1020) resonance reconstructed from the leptonic and hadronic decay channels at SPS energy are discussed taking into account the impact of a hadronic phase and possible medium modifications.Comment: 8 pages, 4 figures, conference proceedings (SQM2004

    What do we learn from Resonance Production in Heavy Ion Collisions?

    Full text link
    Resonances with their short life time and strong coupling to the dense and hot medium are suggested as a signature of the early stage of the fireball created in a heavy ion collision \cite{rap00,lut01,lut02}. The comparison of resonances with different lifetimes and quark contents may give information about time evolution and density and temperature of during the expanding of fireball medium. Resonances in elementary reactions have been measured since 1960. Resonance production in elementary collisions compared with heavy ion collisions where we expect to create a hot and dense medium may show the direct of influence of the medium on the resonances. This paper shows a selection of the recent resonance measurements from SPS and RHIC heavy ion colliders.Comment: 10 pages, 8 figures, HotQuarks 2004 conference proceeding

    The O(N) linear sigma model at finite temperature beyond the Hartree approximation

    Get PDF
    We study the O(N) linear sigma model with spontaneous symmetry breaking, using a Hartree-like ansatz with a classical field and variational masses. We go beyond the Hartree approximation by including the two-loop contribution, the sunset diagram, using the 2PPI expansion. We have computed numerically the effective potential at finite temperature. We find a phase transition of second order, while it is first order in the Hartree approximation. We also discuss some implications of the fact that in this order, the decay of the sigma into two pions affects the thermal diagrams.Comment: 22 pages, 14 figures. v2: minor corrections, some more references. v3: added new set of data, new appendix. Submitted to Phys.Rev.

    Four-nucleon shell-model calculations in a Faddeev-like approach

    Get PDF
    We use equations for Faddeev amplitudes to solve the shell-model problem for four nucleons in the model space that includes up to 14 hbar Omega harmonic-oscillator excitations above the unperturbed ground state. Two- and three-body effective interactions derived from the Reid93 and Argonne V8' nucleon-nucleon potentials are used in the calculations. Binding energies, excitations energies, point-nucleon radii and electromagnetic and strangeness charge form factors for 4He are studied. The structure of the Faddeev-like equations is discussed and a formula for matrix elements of the permutation operators in a harmonic-oscillator basis is given. The dependence on harmonic-oscillator excitations allowed in the model space and on the harmonic-oscillator frequency is investigated. It is demonstrated that the use of the three-body effective interactions improves the convergence of the results.Comment: 22 pages, 13 figures, REVTe

    Large-basis shell-model calculations for p-shell nuclei

    Get PDF
    Results of large-basis shell-model calculations for nuclei with A=7-11 are presented. The effective interactions used in the study were derived microscopically from the Reid93 potential and take into account the Coulomb potential as well as the charge dependence of T=1 partial waves. For A=7, a 6Ω6\hbar\Omega model space was used, while for the rest of the studied nuclides, the calculations were performed in a 4Ω4\hbar\Omega model space. It is demonstrated that the shell model combined with microscopic effective interactions derived from modern nucleon-nucleon potentials is capable of providing good agreement with the experimental properties of the ground state as well as with those of the low-lying excited states.Comment: 17 pages. REVTEX. 16 PostScript figure
    corecore