9 research outputs found

    Reproducible radiomics through automated machine learning validated on twelve clinical applications

    Get PDF
    Radiomics uses quantitative medical imaging features to predict clinical outcomes. Currently, in a new clinical application, findingthe optimal radiomics method out of the wide range of available options has to be done manually through a heuristic trial-anderror process. In this study we propose a framework for automatically optimizing the construction of radiomics workflows perapplication. To this end, we formulate radiomics as a modular workflow and include a large collection of common algorithms foreach component. To optimize the workflow per application, we employ automated machine learning using a random search andensembling. We evaluate our method in twelve different clinical applications, resulting in the following area under the curves: 1)liposarcoma (0.83); 2) desmoid-type fibromatosis (0.82); 3) primary liver tumors (0.80); 4) gastrointestinal stromal tumors (0.77);5) colorectal liver metastases (0.61); 6) melanoma metastases (0.45); 7) hepatocellular carcinoma (0.75); 8) mesenteric fibrosis(0.80); 9) prostate cancer (0.72); 10) glioma (0.71); 11) Alzheimer’s disease (0.87); and 12) head and neck cancer (0.84). Weshow that our framework has a competitive performance compared human experts, outperforms a radiomics baseline, and performssimilar or superior to Bayesian optimization and more advanced ensemble approaches. Concluding, our method fully automaticallyoptimizes the construction of radiomics workflows, thereby streamlining the search for radiomics biomarkers in new applications.To facilitate reproducibility and future research, we publicly release six datasets, the software implementation of our framework,and the code to reproduce this study

    Evaluation of National Surgical Practice for Lateral Lymph Nodes in Rectal Cancer in an Untrained Setting

    Get PDF
    BACKGROUND: Involved lateral lymph nodes (LLNs) have been associated with increased local recurrence (LR) and ipsi-lateral LR (LLR) rates. However, consensus regarding the indication and type of surgical treatment for suspicious LLNs is lacking. This study evaluated the surgical treatment of LLNs in an untrained setting at a national level.METHODS: Patients who underwent additional LLN surgery were selected from a national cross-sectional cohort study regarding patients undergoing rectal cancer surgery in 69 Dutch hospitals in 2016. LLN surgery consisted of either 'node-picking' (the removal of an individual LLN) or 'partial regional node dissection' (PRND; an incomplete resection of the LLN area). For all patients with primarily enlarged (≥7 mm) LLNs, those undergoing rectal surgery with an additional LLN procedure were compared to those undergoing only rectal resection.RESULTS: Out of 3057 patients, 64 underwent additional LLN surgery, with 4-year LR and LLR rates of 26% and 15%, respectively. Forty-eight patients (75%) had enlarged LLNs, with corresponding recurrence rates of 26% and 19%, respectively. Node-picking (n = 40) resulted in a 20% 4-year LLR, and a 14% LLR after PRND (n = 8; p = 0.677). Multivariable analysis of 158 patients with enlarged LLNs undergoing additional LLN surgery (n = 48) or rectal resection alone (n = 110) showed no significant association of LLN surgery with 4-year LR or LLR, but suggested higher recurrence risks after LLN surgery (LR: hazard ratio [HR] 1.5, 95% confidence interval [CI] 0.7-3.2, p = 0.264; LLR: HR 1.9, 95% CI 0.2-2.5, p = 0.874).CONCLUSION: Evaluation of Dutch practice in 2016 revealed that approximately one-third of patients with primarily enlarged LLNs underwent surgical treatment, mostly consisting of node-picking. Recurrence rates were not significantly affected by LLN surgery, but did suggest worse outcomes. Outcomes of LLN surgery after adequate training requires further research.</p
    corecore