46 research outputs found

    A Conserved Tryptophan in the Envelope Cytoplasmic Tail Regulates HIV-1 Assembly and Spread

    Get PDF
    The HIV-1 envelope (Env) is an essential determinant of viral infectivity, tropism and spread between T cells. Lentiviral Env contain an unusually long 150 amino acid cytoplasmic tail (EnvCT), but the function of the EnvCT and many conserved domains within it remain largely uncharacterised. Here, we identified a highly conserved tryptophan motif at position 757 (W757) in the LLP-2 alpha helix of the EnvCT as a key determinant for HIV-1 replication and spread between T cells. Alanine substitution at this position potently inhibited HIV-1 cell–cell spread (the dominant mode of HIV-1 dissemination) by preventing recruitment of Env and Gag to sites of cell–cell contact, inhibiting virological synapse (VS) formation and spreading infection. Single-molecule tracking and super-resolution imaging showed that mutation of W757 dysregulates Env diffusion in the plasma membrane and increases Env mobility. Further analysis of Env function revealed that W757 is also required for Env fusion and infectivity, which together with reduced VS formation, result in a potent defect in viral spread. Notably, W757 lies within a region of the EnvCT recently shown to act as a supporting baseplate for Env. Our data support a model in which W757 plays a key role in regulating Env biology, modulating its temporal and spatial recruitment to virus assembly sites and regulating the inherent fusogenicity of the Env ectodomain, thereby supporting efficient HIV-1 replication and spread

    LsrR-Mediated Quorum Sensing Controls Invasiveness of Salmonella typhimurium by Regulating SPI-1 and Flagella Genes

    Get PDF
    Bacterial cell-to-cell communication, termed quorum sensing (QS), controls bacterial behavior by using various signal molecules. Despite the fact that the LuxS/autoinducer-2 (AI-2) QS system is necessary for normal expression of Salmonella pathogenicity island-1 (SPI-1), the mechanism remains unknown. Here, we report that the LsrR protein, a transcriptional regulator known to be involved in LuxS/AI-2-mediated QS, is also associated with the regulation of SPI-1-mediated Salmonella virulence. We determined that LsrR negatively controls SPI-1 and flagella gene expressions. As phosphorylated AI-2 binds to and inactivates LsrR, LsrR remains active and decreases expression of SPI-1 and flagella genes in the luxS mutant. The reduced expression of those genes resulted in impaired invasion of Salmonella into epithelial cells. Expression of SPI-1 and flagella genes was also reduced by overexpression of the LsrR regulator from a plasmid, but was relieved by exogenous AI-2, which binds to and inactivates LsrR. These results imply that LsrR plays an important role in selecting infectious niche of Salmonella in QS dependent mode

    Analysis of the Expression, Secretion and Translocation of the Salmonella enterica Type III Secretion System Effector SteA

    Get PDF
    Many Gram-negative pathogens possess virulence-related type III secretion systems. Salmonella enterica uses two of these systems, encoded on the pathogenicity islands SPI-1 and SPI-2, respectively, to translocate more than 30 effector proteins into eukaryotic host cells. SteA is one of the few effectors that can be translocated by both systems. We investigated the conditions affecting the synthesis of this effector, its secretion to culture media and its translocation into host cells. Whereas steA was expressed under a wide range of conditions, some factors, including low and high osmolarity, and presence of butyrate, decreased expression. SteA was efficiently secreted to the culture media under both SPI-1 and SPI-2 inducing conditions. The kinetics of translocation into murine macrophages and human epithelial cells was studied using fusions with the 3xFLAG tag, and fusions with CyaA from Bordetella pertussis. Translocation into macrophages under non-invasive conditions was mainly dependent on the SPI-2-encoded type III secretion system but some participation of the SPI-1 system was also detected 6 hours post-infection. Interestingly, both type III secretion systems had a relevant role in the translocation of SteA into epithelial cells. Finally, a deletion approach allowed the identification of the N-terminal signal necessary for translocation of this effector. The amino acid residues 1–10 were sufficient to direct translocation into host cells through both type III secretion systems. Our results provide new examples of functional overlapping between the two type III secretion systems of Salmonella

    The 'when and whereabouts' of injected pathogen effectors

    No full text
    Comment on: "Imaging type-III secretion reveals dynamics and spatial segregation of Salmonella effectors."International audienceTracking the spatiotemporal dynamics of bacterial effectors injected into single living host cells has become possible with a split GFP-based method
    corecore