18 research outputs found

    Development of a liposomal delivery system for temperature-triggered release of a tumor targeting agent, Ln(III)-DOTA-phenylboronate

    No full text
    Liposomes, capable of temperature-triggered content release at the site of interest, can be of great importance for imaging and therapy of tumors. The delivery of imaging agents or therapeutics can be improved by application of liposomes with a gel-to-liquid phase-transition temperature suitable for mild hyperthermia (41-43 degrees C), and by prolonging their circulation time by incorporation of lipids containing polyethyleneglycol moieties. Still, the rapid wash out of the delivered material from the tumor tissue is a major obstacle for both imaging and therapy. In this study, we developed an optimized temperature sensitive liposomal system to be used with mild hyperthermia: highly stable at physiological temperature and with a sharp transition of the bilayer at 41.5 degrees C, with subsequent rapid release of entrapped compounds such as calcein or tumor cell-targeting contrast agents. Intravital microscopy on calcein/rhodamine containing liposomes was applied to demonstrate the applicability of this system in vivo. The calcein loaded liposomes were injected iv into nude mice with a human BLM melanoma tumor implanted in a dorsal skin-fold window chamber. Arrival of the liposomes at the tumor site and content release after temperature increase were monitored. The results demonstrated not only accumulation of the liposomes at the tumor site, but also a massive release of calcein after increase of the temperature to 41 degrees C. The versatility of the thermosensitive liposomes was further demonstrated by encapsulation of a tumor cell-targeting DOTA-phenylboronate conjugate and its release at elevated temperatures. The DOTA ligand in this system is able to chelate a variety of metals suitable for both diagnostic and therapeutic applications, whereas the phenylboronate function is able to target specifically to tumor cells through a covalent binding with sialic acid moieties over-expressed on their surface upon heat-triggered release from the liposomal carrier. (C) 2010 Elsevier Ltd. All rights reserved

    Triggered content release from optimized stealth thermosensitive liposomes using mild hyperthermia

    No full text
    Liposomes are potent nanocarriers to deliver chemotherapeutic drugs to tumors. However, the inefficient drug release hinders their application. Thermosensitive liposomes (TSL) can release drugs upon heat. This study aims to identify the optimum 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG(2000) (DSPE-PEG(2000)) concentration in stealth TSL to improve content release efficiency under mild hyperthermia (HT). TSL were prepared with DSPE-PEG2000 from 1 to 10 mol%, around 80 nm in size. Quenched carboxyfluorescein (CF) in aqueous phase represented encapsulated drugs. In vitro temperature/time-dependent CF release and TSL stability in serum were quantified by fluorometry. In vivo CF release in dorsal skin flap window chamber models implanted with human BLM melanoma was captured by confocal microscopy. In vitro heat triggered CF release increased with increasing DSPE-PEG2000 density. However, 6 mol% and higher DSPE-PEG2000 caused CF leakage at physiological temperature. TSL with 5 mol% DSPE-PEG2000 were stable at 37 degrees C. while released 60% CF in 1 min and almost 100% CF in 1 h at 42 degrees C. In vivo optical intravital imaging showed immediate massive CF release above 41 degrees C. In conclusion, incorporation of 5 mol% DSPE-PEG(2000) optimized stealth TSL content release triggered by HT. (C) 2010 Elsevier B.V. All rights reserved

    Cationic Thermosensitive Liposomes: A Novel Dual Targeted Heat-Triggered Drug Delivery Approach for Endothelial and Tumor Cells

    No full text
    Developing selectively targeted and heat-responsive nanocarriers holds paramount promises in chemotherapy. We show that this can be achieved by designing liposomes combining cationic charged and thermosensitive lipids in the bilayer. We demonstrated, using flow cytometry, live cell imaging, and intravital optical imaging, that cationic thermosensitive liposomes specifically target angiogenic endothelial and tumor cells. Application of mild hyperthermia led to a rapid content release extra- and intracellularly in two crucial cell types in a solid tumor
    corecore