1,847 research outputs found

    Two sides of the coin:Patient and provider perceptions of health care delivery to patients from culturally and linguistically diverse backgrounds

    Get PDF
    BACKGROUND: Australia is a culturally diverse nation with one in seven Australians born in a non-English speaking country. Culturally and Linguistically Diverse (CALD) populations are at a high risk of developing preventable chronic diseases such as cardiovascular disease, type 2 diabetes mellitus, renal disease, and chronic respiratory disease, especially communities from the Pacific Islands, the Middle East, North Africa, the Indian subcontinent and China. Previous studies have shown that access to services may be a contributing factor. This study explores the experiences, attitudes and opinions of immigrants from different cultural and linguistic backgrounds and their health care providers with regard to chronic disease care. METHODS: Five focus groups were conducted comprising participants from an Arabic speaking background, or born in Sudan, China, Vietnam or Tonga. A total of 50 members participated. All focus groups were conducted in the participants’ language and facilitated by a trained multicultural health worker. In addition, 14 health care providers were interviewed by telephone. Interviews were digitally recorded and transcribed. All qualitative data were analysed with the assistance of QSR NVivo 8 software. RESULTS: Participants were generally positive about the quality and accessibility of health services, but the costs of health care and waiting times to receive treatment presented significant barriers. They expressed a need for greater access to interpreters and culturally appropriate communication and education. They mentioned experiencing racism and discriminatory practices. Health professionals recommended recruiting health workers from CALD communities to assist them to adequately elicit and address the needs of patients from CALD backgrounds. CONCLUSIONS: CALD patients, carers and community members as well as health professionals all highlighted the need for establishing culturally tailored programs for chronic disease prevention and management in CALD populations. Better health care can be achieved by ensuring that further investment in culturally specific programs and workforce development is in line with the number of CALD communities and their needs

    Long duration thermal hard X-ray sources observed in two eruptive flares

    Get PDF
    We present observations of two eruptive flares on 17 of December 2006 (C1.9) and 19 of May 2007 (B9.7) which had good coverage with both Hinode and RHESSI. In these flares we see a long lived, gradual thermal hard X-ray source of low emission measure and, relative to the loops observed with GOES and XRT, high temperature. The lack of a non-thermal hard X-ray component and impulsive behaviour is inconsistent with electron beam driven chromospheric evaporation

    Granular-Scale Elementary Flux Emergence Episodes in a Solar Active Region

    Get PDF
    We analyze data from Hinode spacecraft taken over two 54-minute periods during the emergence of AR 11024. We focus on small-scale portions within the observed solar active region and discover the appearance of very distinctive small-scale and short-lived dark features in Ca II H chromospheric filtergrams and Stokes I images. The features appear in regions with close-to-zero longitudinal magnetic field, and are observed to increase in length before they eventually disappear. Energy release in the low chromospheric line is detected while the dark features are fading. In time series of magnetograms a diverging bipolar configuration is observed accompanying the appearance of the dark features and the brightenings. The observed phenomena are explained as evidencing elementary flux emergence in the solar atmosphere, i.e small-scale arch filament systems rising up from the photosphere to the lower chromosphere with a length scale of a few solar granules. Brightenings are explained as being the signatures of chromospheric heating triggered by reconnection of the rising loops (once they reached chromospheric heights) with pre-existing magnetic fields as well as to reconnection/cancellation events in U-loop segments of emerging serpentine fields. We study the temporal evolution and dynamics of the events and compare them with the emergence of magnetic loops detected in quiet sun regions and serpentine flux emergence signatures in active regions. Incorporating the novel features of granular-scale flux emergence presented in this study we advance the scenario for serpentine flux emergence.Comment: 24 pages, 9 figures. Accepted for publication in Solar Physic

    A slow coronal mass ejection with rising X-ray source

    Get PDF
    An eruptive event, which occurred on 16th April 2002, is discussed. Using images from the Transition Region and Coronal Explorer ( TRACE) at 195 angstrom, we observe a lifting flux rope which gives rise to a slow coronal mass ejection ( CME). There are supporting velocity observations from the Coronal Diagnostic Spectrometer ( CDS) on the Solar and Heliospheric Observatory ( SOHO), which illustrate the helical nature of the structure. Additionally a rising coronal hard X- ray source, which is observed with the Reuven Ramaty High Energy Solar Spectroscopic Imager ( RHESSI), is shown to follow the flux rope with a speed of similar to 60 km s(-1). It is also sampled by the CDS slit, although it has no signature in the Fe XIX band. Following the passage of this source, there is evidence from the CDS for down- flowing ( cooling) material along newly reconnected loops through Doppler velocity observations, combined with magnetic field modeling. Later, a slow CME is observed with the Large Angle and Spectroscopic Coronagraph ( LASCO). We combine a height- time profile of the flux rope at lower altitudes with the slow CME. The rising flux rope speeds up by a factor of 1.7 at the start of the impulsive energy release and goes through further acceleration before reaching 1.5 solar radii. These observations support classical CME scenarios in which the eruption of a filament precedes flaring activity. Cusped flare loops are observed following the erupting flux rope and their altitude increases with time. In addition we find RHESSI sources both below and above the probable location of the reconnection region

    Signatures of Interchange Reconnection: STEREO, ACE and Hinode Observations Combined

    Get PDF
    Combining STEREO, ACE and Hinode observations has presented an opportunity to follow a filament eruption and coronal mass ejection (CME) on the 17th of October 2007 from an active region (AR) inside a coronal hole (CH) into the heliosphere. This particular combination of `open' and closed magnetic topologies provides an ideal scenario for interchange reconnection to take place. With Hinode and STEREO data we were able to identify the emergence time and type of structure seen in the in-situ data four days later. On the 21st, ACE observed in-situ the passage of an ICME with `open' magnetic topology. The magnetic field configuration of the source, a mature AR located inside an equatorial CH, has important implications for the solar and interplanetary signatures of the eruption. We interpret the formation of an `anemone' structure of the erupting AR and the passage in-situ of the ICME being disconnected at one leg, as manifested by uni-directional suprathermal electron flux in the ICME, to be a direct result of interchange reconnection between closed loops of the CME originating from the AR and `open' field lines of the surrounding CH.Comment: 13 pages, 13 figures, accepted Annales Geophysica

    The Case of Coal

    Get PDF

    Flux cancellation and the evolution of the eruptive filament of 2011 June 7

    Get PDF
    We investigate whether flux cancellation is responsible for the formation of a very massive filament resulting in the spectacular 2011 June 7 eruption. We analyse and quantify the amount of flux cancellation that occurs in NOAA AR 11226 and its two neighbouring ARs (11227 & 11233) using line-of-sight magnetograms from the Heliospheric Magnetic Imager. During a 3.6-day period building up to the filament eruption, 1.7 x 10^21 Mx, 21% of AR 11226's maximum magnetic flux, was cancelled along the polarity inversion line (PIL) where the filament formed. If the flux cancellation continued at the same rate up until the eruption then up to 2.8 x 10^21 Mx (34% of the AR flux) may have been built into the magnetic configuration that contains the filament plasma. The large flux cancellation rate is due to an unusual motion of the positive polarity sunspot, which splits, with the largest section moving rapidly towards the PIL. This motion compresses the negative polarity and leads to the formation of an orphan penumbra where one end of the filament is rooted. Dense plasma threads above the orphan penumbra build into the filament, extending its length, and presumably injecting material into it. We conclude that the exceptionally strong flux cancellation in AR 11226 played a significant role in the formation of its unusually massive filament. In addition, the presence and coherent evolution of bald patches in the vector magnetic field along the PIL suggests that the magnetic field configuration supporting the filament material is that of a flux rope.Comment: 18 pages, 7 figures. Submitted to ApJ in December 2015, accepted in June 201
    • 

    corecore