9 research outputs found
Micro-cantilever Bending Test of Sintered Cu nanoparticles for Power Electronic Devices
The application of microporous sintered copper (Cu) as a bonding material to replace conventional die-attach materials in power electronic devices has attracted considerable interest. Many previous studies have focused on the effect of processing parameters (temperature, time, pressure) on the microstructure evolution of sintered Cu. However, there are only a few studies with regard to the mechanical properties of sintered Cu. As the die-attach layer undergoes thermal and mechanical stress during its application, it is essential to investigate the micro-scale mechanical properties of sintered Cu. Fracture toughness is a measure of the resistance of a material to crack propagation under predominantly linear-elastic conditions, which is an essential parameter for predicting fracture failure. As cracks and defects are difficult to avoid during fabrication and application processing for sintered Cu, which will definitely cause a significant effect on micromechanical properties. Thus, it is essential to reveal the effect of microstructure on fracture toughess of sintered Cu nanoparticles.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and Material
Jackson Pollockâs Number 1A, 1948: a non-invasive study using macro-x-ray fluorescence mapping (MA-XRF) and multivariate curve resolution-alternating least squares (MCR-ALS) analysis
Jackson Pollockâs Number 1A, 1948 painting was investigated using in situ scanning macro-x-ray fluorescence mapping (MA-XRF) to help characterize the artistâs materials and his creative process. A multivariate curve resolution-alternating least squares (MCR-ALS) approach was used to examine the hyperspectral data and obtain distribution maps and signature spectra for the paints he used. The composition of the paints was elucidated based on the chemical elements identified in the signature spectra and a tentative list of pigments, fillers and other additives is proposed for eleven different paints and for the canvas. The paint distribution maps were used to virtually reconstruct the artist process and document the sequence and manner in which Pollock applied the different paints, using deliberate and specific gestures(OLD) MSE-
Full parity phase diagram of a proximitized nanowire island
We measure the charge periodicity of Coulomb blockade conductance oscillations of a hybrid InSb-Al island as a function of gate voltage and parallel magnetic field. The periodicity changes from to at a gate-dependent value of the magnetic field, , decreasing from a high to a low limit upon increasing the gate voltage. In the gate voltage region between the two limits, which our numerical simulations indicate to be the most promising for locating Majorana zero modes, we observe correlated oscillations of peak spacings and heights. For positive gate voltages, the transition with low is due to the presence of nontopological states whose energy quickly disperses below the charging energy due to the orbital effect of the magnetic field. Our measurements highlight the importance of a careful exploration of the entire available phase space of a proximitized nanowire as a prerequisite to define future topological qubits.Architecture and the Built EnvironmentQuTechQCD/Veldhorst LabBUS/Quantum DelftQRD/Kouwenhoven LabOptical and Laser Remote SensingQN/Kouwenhoven La
Spin-filtered measurements of Andreev bound states in semiconductor-superconductor nanowire devices
Semiconductor nanowires coupled to superconductors can host Andreev bound states with distinct spin and parity, including a spin-zero state with an even number of electrons and a spin-1/2 state with odd-parity. Considering the difference in spin of the even and odd states, spin-filtered measurements can reveal the underlying ground state. To directly measure the spin of single-electron excitations, we probe an Andreev bound state using a spin-polarized quantum dot that acts as a bipolar spin filter, in combination with a non-polarized tunnel junction in a three-terminal circuit. We observe a spin-polarized excitation spectrum of the Andreev bound state, which can be fully spin-polarized, despite strong spin-orbit interaction in the InSb nanowires. Decoupling the hybrid from the normal lead causes a current blockade, by trapping the Andreev bound state in an excited state. Spin-polarized spectroscopy of hybrid nanowire devices, as demonstrated here, is proposed as an experimental tool to support the observation of topological superconductivity.QRD/Kouwenhoven LabQRD/Wimmer GroupBUS/Quantum DelftQN/Kouwenhoven La
Supercurrent parity meter in a nanowire Cooper pair transistor
We study a Cooper pair transistor realized by two Josephson weak links that enclose a superconducting island in an InSb-Al hybrid nanowire. When the nanowire is subject to a magnetic field, isolated subgap levels arise in the superconducting island and, because of the Coulomb blockade, mediate a supercurrent by coherent cotunneling of Cooper pairs. We show that the supercurrent resulting from such cotunneling events exhibits, for low to moderate magnetic fields, a phase offset that discriminates even and odd charge ground states on the superconducting island. Notably, this phase offset persists when a subgap state approaches zero energy and, based on theoretical considerations, permits parity measurements of subgap states by supercurrent interferometry. Such supercurrent parity measurements could, in a series of experiments, provide an alternative approach for manipulating and protecting quantum information stored in the isolated subgap levels of superconducting islands. Electrical Engineering, Mathematics and Computer ScienceQuTechQRD/Kouwenhoven LabBUS/Quantum DelftQN/Kouwenhoven La
New insights into the complex photoluminescence behaviour of titanium white pigments
This work reports the analysis of the time-resolved photoluminescence behaviour on the nanosecond and microsecond time scale of fourteen historical and contemporary titanium white pigments. The pigments were produced with different production methods and post-production treatments, giving rise to a remarkable variability of titanium dioxide powders and, in some cases, to the formation of a complex surface of the crystal agglomerates. The pigments have been further characterized by Raman spectroscopy, scanning transmission electron microscopy coupled with energy dispersive X-ray spectroscopy and inductively coupled plasma atomic emission spectrometry. Our study provides a clear view of the main features of the photoluminescence (PL) emission of anatase- and rutile-based pigments. For both the polymorphs of titanium dioxide the room-temperature photoluminescence emission is complex and involves different relaxation paths, related to shallow levels close to the conduction bands and mid-gap trap states. The PL behaviour appears to be little affected by post-production treatments such as organic and inorganic coatings. Instead, the presence of niobium impurities in the TiO2 crystal lattice, as residues of the sulphate synthesis process, induce a remarkable quenching of the visible emission of anatase-based pigments. We confirm that rutile-based and anatase-based pigments are significantly different in terms of photoluminescence behaviour. This clear distinction is a valuable point for non-invasive pigment identification by in-situ photoluminescence spectroscopy. In particular, while many organic binding media emit in the visible region, the near-infrared emission of rutile is specific and can likely be used to identify the pigment in more complex materials as paints. This research paves the way to future studies of the photo-physical properties of titanium white pigments, which is imperative to understand the risk of degradation induced by the well-known photocatalytic activity of this widely used 20th century pigment.Accepted Author Manuscript(OLD) MSE-
Tunable Crossed Andreev Reflection and Elastic Cotunneling in Hybrid Nanowires
A short superconducting segment can couple attached quantum dots via elastic cotunneling (ECT) and crossed Andreev reflection (CAR). Such coupled quantum dots can host Majorana bound states provided that the ratio between CAR and ECT can be controlled. Metallic superconductors have so far been shown to mediate such tunneling phenomena, albeit with limited tunability. Here, we show that Andreev bound states formed in semiconductor-superconductor heterostructures can mediate CAR and ECT over mesoscopic length scales. Andreev bound states possess both an electron and a hole component, giving rise to an intricate interference phenomenon that allows us to tune the ratio between CAR and ECT deterministically. We further show that the combination of intrinsic spin-orbit coupling in InSb nanowires and an applied magnetic field provides another efficient knob to tune the ratio between ECT and CAR and optimize the amount of coupling between neighboring quantum dots.QRD/Kouwenhoven LabQRD/Wimmer GroupQRD/Goswami LabBUS/Quantum DelftQN/Wimmer GroupQN/Kouwenhoven LabQubit Research Divisio
Realization of a minimal Kitaev chain in coupled quantum dots
Majorana bound states constitute one of the simplest examples of emergent non-Abelian excitations in condensed matter physics. A toy model proposed by Kitaev shows that such states can arise at the ends of a spinless p-wave superconducting chain1. Practical proposals for its realization2,3 require coupling neighbouring quantum dots (QDs) in a chain through both electron tunnelling and crossed Andreev reflection4. Although both processes have been observed in semiconducting nanowires and carbon nanotubes5â8, crossed-Andreev interaction was neither easily tunable nor strong enough to induce coherent hybridization of dot states. Here we demonstrate the simultaneous presence of all necessary ingredients for an artificial Kitaev chain: two spin-polarized QDs in an InSb nanowire strongly coupled by both elastic co-tunnelling (ECT) and crossed Andreev reflection (CAR). We fine-tune this system to a sweet spot where a pair of poor manâs Majorana states is predicted to appear. At this sweet spot, the transport characteristics satisfy the theoretical predictions for such a system, including pairwise correlation, zero charge and stability against local perturbations. Although the simple system presented here can be scaled to simulate a full Kitaev chain with an emergent topological order, it can also be used imminently to explore relevant physics related to non-Abelian anyons.Green Open Access added to TU Delft Institutional Repository âYou share, we take care!â â Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.QRD/Kouwenhoven LabQRD/Wimmer GroupBUS/Quantum DelftCommunication QuTechQRD/Goswami LabApplied SciencesBUS/TNO STAFFQN/Wimmer GroupQN/Kouwenhoven La
Roma Undergraduatesâ Personal Network in the Process of College Transition. A Social Capital Approach
Roma university studentsâ personal networks become unstable in the process of college transition. We describe the personal networks of these students using the model set up by Brandes et al. (in: Proceedings of the IEEE pacific visualization symposium (Pacific Visâ08), IEEE Computer Society Press, 2008) and analyse the identified groups utilizing the social capital approach. We mapped seventy-six studentsâ networks applying contact diary. Origin, host and fellow groups significantly differ in their composition; they provide different (âbondingâ or âbridgingâ) type of resources, and their availability to the Roma students is also different. We found significant differences between the students in their tendency to rely on certain groups in the process of academic adjustment