34 research outputs found

    Segmentation techniques of brain arteriovenous malformations for 3D visualization: a systematic review

    Full text link
    BACKGROUND Visualization, analysis and characterization of the angioarchitecture of a brain arteriovenous malformation (bAVM) present crucial steps for understanding and management of these complex lesions. Three-dimensional (3D) segmentation and 3D visualization of bAVMs play hereby a significant role. We performed a systematic review regarding currently available 3D segmentation and visualization techniques for bAVMs. METHODS PubMed, Embase and Google Scholar were searched to identify studies reporting 3D segmentation techniques applied to bAVM characterization. Category of input scan, segmentation (automatic, semiautomatic, manual), time needed for segmentation and 3D visualization techniques were noted. RESULTS Thirty-three studies were included. Thirteen (39%) used MRI as baseline imaging modality, 9 used DSA (27%), and 7 used CT (21%). Segmentation through automatic algorithms was used in 20 (61%), semiautomatic segmentation in 6 (18%), and manual segmentation in 7 (21%) studies. Median automatic segmentation time was 10 min (IQR 33), semiautomatic 25 min (IQR 73). Manual segmentation time was reported in only one study, with the mean of 5-10 min. Thirty-two (97%) studies used screens to visualize the 3D segmentations outcomes and 1 (3%) study utilized a heads-up display (HUD). Integration with mixed reality was used in 4 studies (12%). CONCLUSIONS A golden standard for 3D visualization of bAVMs does not exist. This review describes a tendency over time to base segmentation on algorithms trained with machine learning. Unsupervised fuzzy-based algorithms thereby stand out as potential preferred strategy. Continued efforts will be necessary to improve algorithms, integrate complete hemodynamic assessment and find innovative tools for tridimensional visualization

    Evaluate the safety and efficacy of dura sealant patch in reducing cerebrospinal fluid leakage following elective cranial surgery (ENCASE II): study protocol for a randomized, two-arm, multicenter trial

    Full text link
    BACKGROUND Cerebrospinal fluid (CSF) leakage is a frequent and challenging complication in neurosurgery, especially in the posterior fossa, with a prevalence of 8%. It is associated with substantial morbidity and increased healthcare costs. A novel dural sealant patch (LIQOSEAL) was developed for watertight dural closure. The objective of this study is to clinically assess the safety and effectiveness of LIQOSEAL as a means of reducing intra- as well as postoperative CSF leakage in patients undergoing elective posterior fossa intradural surgery with a dural closure procedure compared to the best currently available dural sealants. METHODS We will conduct a two-arm, randomized controlled, multicenter study with a 90-day follow-up. A total of 228 patients will be enrolled in 19 sites, of which 114 will receive LIQOSEAL and 114 an FDA-approved PEG sealant. The composite primary endpoint is defined as intraoperative CSF leakage at PEEP 20 cm H2_{2}O, percutaneous CSF leakage within 90 days of, wound infection within 90 days of or pseudomeningocele of more than 20cc on MRI or requiring intervention. We hypothesize that the primary endpoint will not be reached by more than 10 patients (9%) in the investigational arm, which will demonstrate non-inferiority of LIQOSEAL compared to control. DISCUSSION This trial will evaluate whether LIQOSEAL is non-inferior to control as a means of reducing CSF leakage and safety TRIAL REGISTRATION: ClinicalTrials.gov NCT04086550 . Registered on 11 September 2019

    Ex vivo and in vivo evaluation of transsphenoidal Liqoseal application to prevent cerebrospinal fluid leakage

    Full text link
    Background: Despite improvements in closure techniques by using a vital nasoseptal flap, the use of sealing materials, and improved neurosurgical techniques, cerebrospinal fluid (CSF) leak after transsphenoidal surgery still is a clinically relevant problem. Liqoseal® (Polyganics bv, Groningen, The Netherlands) is a CE-approved bioresorbable sealant patch for use as an adjunct to standard methods of cranial dural closure to prevent CSF leakage. This study aims to evaluate the application of Liqoseal in transsphenoidal surgery ex vivo and in vivo. Methods: 1. We created an ex vivo setup simulating the sphenoidal anatomy, using a fluid pump and porcine dura positioned on a conus with the anatomical dimensions of the sella to evaluate whether the burst pressure of Liqoseal applied to a bulging surface was above physiological intracranial pressure. Burst pressure was measured with a probe connected to dedicated computer software. Because of the challenging transsphenoidal environment, we tested in 4 groups with varying compression weight and time for the application of Liqoseal. 2. We subsequently describe the application of Liqoseal® in 3 patients during transsphenoidal procedures with intraoperative CSF leakage to prevent postoperative CSF leakage. Results: 1. Ex vivo: The overall mean burst pressure in the transsphenoidal setup was 231 (± 103) mmHg. There was no significant difference in mean burst pressure between groups based on application weight and time (p = 0.227). 2. In Vivo: None of the patients had a postoperative CSF leak. No nose passage problems were observed. One patient had a postoperative meningitis and ventriculitis, most likely related to preoperative extensive CSF leakage. Postoperative imaging did not show any local infection, swelling, or other device-related adverse effects. Conclusions: We assess the use of Liqoseal® to seal a dural defect during an endoscopic transsphenoidal procedure as to be likely safe and potentially effective. Keywords: Case report; Cerebrospinal fluid leakage; Device; Transsphenoidal surgery

    Mixed Reality in Modern Surgical and Interventional Practice: Narrative Review of the Literature

    Full text link
    BACKGROUND Mixed reality (MR) and its potential applications have gained increasing interest within the medical community over the recent years. The ability to integrate virtual objects into a real-world environment within a single video-see-through display is a topic that sparks imagination. Given these characteristics, MR could facilitate preoperative and preinterventional planning, provide intraoperative and intrainterventional guidance, and aid in education and training, thereby improving the skills and merits of surgeons and residents alike. OBJECTIVE In this narrative review, we provide a broad overview of the different applications of MR within the entire spectrum of surgical and interventional practice and elucidate on potential future directions. METHODS A targeted literature search within the PubMed, Embase, and Cochrane databases was performed regarding the application of MR within surgical and interventional practice. Studies were included if they met the criteria for technological readiness level 5, and as such, had to be validated in a relevant environment. RESULTS A total of 57 studies were included and divided into studies regarding preoperative and interventional planning, intraoperative and interventional guidance, as well as training and education. CONCLUSIONS The overall experience with MR is positive. The main benefits of MR seem to be related to improved efficiency. Limitations primarily seem to be related to constraints associated with head-mounted display. Future directions should be aimed at improving head-mounted display technology as well as incorporation of MR within surgical microscopes, robots, and design of trials to prove superiority

    Spinal fixation after laminectomy in pigs prevents postoperative spinal cord injury

    Get PDF
    BACKGROUND: A safe, effective, and ethically sound animal model is essential for preclinical research to investigate spinal medical devices. We report the initial failure of a porcine spinal survival model and a potential solution by fixating the spine. METHODS: Eleven female Dutch Landrace pigs underwent a spinal lumbar interlaminar decompression with durotomy and were randomized for implantation of a medical device or control group. Magnetic resonance imaging (MRI) was performed before termination. RESULTS: Neurological deficits were observed in 6 out of the first 8 animals. Three of these animals were terminated prematurely because they reached the predefined humane endpoint. Spinal cord compression and myelopathy was observed on postoperative MRI imaging. We hypothesized postoperative spinal instability with epidural hematoma, inherent to the biology of the model, and subsequent spinal cord injury as a potential cause. In the subsequent 3 animals, we fixated the spine with Lubra plates. All these animals recovered without neurological deficits. The extent of spinal cord compression on MRI was variable across animals and did not seem to correspond well with neurological outcome. CONCLUSION: This study shows that in a porcine in vivo model of interlaminar decompression and durotomy, fixation of the spine after lumbar interlaminar decompression is feasible and may improve neurological outcomes. Additional research is necessary to evaluate this hypothesis

    The HeMoVal study protocol: a prospective international multicenter cohort study to validate cerebrospinal fluid hemoglobin as a monitoring biomarker for aneurysmal subarachnoid hemorrhage related secondary brain injury.

    Get PDF
    INTRODUCTION Preclinical studies provided a strong rationale for a pathophysiological link between cell-free hemoglobin in the cerebrospinal fluid (CSF-Hb) and secondary brain injury after subarachnoid hemorrhage (SAH-SBI). In a single-center prospective observational clinical study, external ventricular drain (EVD) based CSF-Hb proved to be a promising biomarker to monitor for SAH-SBI. The primary objective of the HeMoVal study is to prospectively validate the association between EVD based CSF-Hb and SAH-SBI during the first 14 days post-SAH. Secondary objectives include the assessment of the discrimination ability of EVD based CSF-Hb for SAH-SBI and the definition of a clinically relevant range of EVD based CSF-Hb toxicity. In addition, lumbar drain (LD) based CSF-Hb will be assessed for its association with and discrimination ability for SAH-SBI. METHODS HeMoVal is a prospective international multicenter observational cohort study. Adult patients admitted with aneurysmal subarachnoid hemorrhage (aSAH) are eligible. While all patients with aSAH are included, we target a sample size of 250 patients with EVD within the first 14 day after aSAH. Epidemiologic and disease-specific baseline measures are assessed at the time of study inclusion. In patients with EVD or LD, each day during the first 14 days post-SAH, 2 ml of CSF will be sampled in the morning, followed by assessment of the patients for SAH-SBI, co-interventions, and complications in the afternoon. After 3 months, a clinical follow-up will be performed. For statistical analysis, the cohort will be stratified into an EVD, LD and full cohort. The primary analysis will quantify the strength of association between EVD based CSF-Hb and SAH-SBI in the EVD cohort based on a generalized additive model. Secondary analyses include the strength of association between LD based CSF-Hb and SAH-SBI in the LD cohort based on a generalized additive model, as well as the discrimination ability of CSF-Hb for SAH-SBI based on receiver operating characteristic (ROC) analyses. DISCUSSION We hypothesize that this study will validate the value of CSF-Hb as a biomarker to monitor for SAH-SBI. In addition, the results of this study will provide the potential base to define an intervention threshold for future studies targeting CSF-Hb toxicity after aSAH. STUDY REGISTRATION ClinicalTrials.gov Identifier NCT04998370 . Date of registration: August 10, 2021

    The HeMoVal study protocol: a prospective international multicenter cohort study to validate cerebrospinal fluid hemoglobin as a monitoring biomarker for aneurysmal subarachnoid hemorrhage related secondary brain injury

    Full text link
    Introduction: Preclinical studies provided a strong rationale for a pathophysiological link between cell-free hemoglobin in the cerebrospinal fluid (CSF-Hb) and secondary brain injury after subarachnoid hemorrhage (SAH-SBI). In a single-center prospective observational clinical study, external ventricular drain (EVD) based CSF-Hb proved to be a promising biomarker to monitor for SAH-SBI. The primary objective of the HeMoVal study is to prospectively validate the association between EVD based CSF-Hb and SAH-SBI during the first 14 days post-SAH. Secondary objectives include the assessment of the discrimination ability of EVD based CSF-Hb for SAH-SBI and the definition of a clinically relevant range of EVD based CSF-Hb toxicity. In addition, lumbar drain (LD) based CSF-Hb will be assessed for its association with and discrimination ability for SAH-SBI. Methods: HeMoVal is a prospective international multicenter observational cohort study. Adult patients admitted with aneurysmal subarachnoid hemorrhage (aSAH) are eligible. While all patients with aSAH are included, we target a sample size of 250 patients with EVD within the first 14 day after aSAH. Epidemiologic and disease-specific baseline measures are assessed at the time of study inclusion. In patients with EVD or LD, each day during the first 14 days post-SAH, 2 ml of CSF will be sampled in the morning, followed by assessment of the patients for SAH-SBI, co-interventions, and complications in the afternoon. After 3 months, a clinical follow-up will be performed. For statistical analysis, the cohort will be stratified into an EVD, LD and full cohort. The primary analysis will quantify the strength of association between EVD based CSF-Hb and SAH-SBI in the EVD cohort based on a generalized additive model. Secondary analyses include the strength of association between LD based CSF-Hb and SAH-SBI in the LD cohort based on a generalized additive model, as well as the discrimination ability of CSF-Hb for SAH-SBI based on receiver operating characteristic (ROC) analyses. Discussion: We hypothesize that this study will validate the value of CSF-Hb as a biomarker to monitor for SAH-SBI. In addition, the results of this study will provide the potential base to define an intervention threshold for future studies targeting CSF-Hb toxicity after aSAH

    Effectiveness of Sealants in Prevention of Cerebrospinal Fluid Leakage after Spine Surgery: A Systematic Review

    No full text
    Background: Sealants are often used in spine surgery to prevent postoperative cerebrospinal fluid (CSF) leakage. Objective: To investigate the efficacy of sealants in preventing postoperative CSF leakage in spine surgery. Methods: The PubMed, Embase, and Cochrane databases were searched for articles reporting the outcome of patients treated with a sealant for spinal dural repair. The number of patients, indication of surgery, surgical site, applied technique, type of sealant used, and outcome in terms of postoperative CSF leakage were noted for each study. The primary outcome was CSF leakage in general and secondary outcome infection. Results: Forty-one articles were selected with a total of 2542 cases; there were 4 comparative studies with 540 sealed cases and 343 cases with primary suture closure only. The quantity of CSF leakage did not differ between the sealant group (50 of 540, 9.1%) and the group treated with sutures only (48 of 343, 13.8%) (risk ratio [RR], 0.58 [confidence interval [CI], 0.18–1.82]). The infection rate did also not differ between the sealant and primary suture groups (RR, 0.94 [CI, 0.55–1.61]). This result was found in both the intended and the unintended durotomy subgroups. Secondary analysis of all cases showed that endoscopic or minimally invasive surgery had lower CSF leakage rates compared with open surgery regardless of sealant use (RR, 0.18 [CI, 0.05–0.75]). Conclusions: Currently available sealants seem not to reduce the rate of CSF leakage in spine surgery. In endoscopic and minimally invasive surgery, the CSF leakage rate is less frequent compared with open, conventional surgery regardless of sealant use

    Effectiveness of Sealants in Prevention of Cerebrospinal Fluid Leakage after Spine Surgery: A Systematic Review

    No full text
    Background: Sealants are often used in spine surgery to prevent postoperative cerebrospinal fluid (CSF) leakage. Objective: To investigate the efficacy of sealants in preventing postoperative CSF leakage in spine surgery. Methods: The PubMed, Embase, and Cochrane databases were searched for articles reporting the outcome of patients treated with a sealant for spinal dural repair. The number of patients, indication of surgery, surgical site, applied technique, type of sealant used, and outcome in terms of postoperative CSF leakage were noted for each study. The primary outcome was CSF leakage in general and secondary outcome infection. Results: Forty-one articles were selected with a total of 2542 cases; there were 4 comparative studies with 540 sealed cases and 343 cases with primary suture closure only. The quantity of CSF leakage did not differ between the sealant group (50 of 540, 9.1%) and the group treated with sutures only (48 of 343, 13.8%) (risk ratio [RR], 0.58 [confidence interval [CI], 0.18–1.82]). The infection rate did also not differ between the sealant and primary suture groups (RR, 0.94 [CI, 0.55–1.61]). This result was found in both the intended and the unintended durotomy subgroups. Secondary analysis of all cases showed that endoscopic or minimally invasive surgery had lower CSF leakage rates compared with open surgery regardless of sealant use (RR, 0.18 [CI, 0.05–0.75]). Conclusions: Currently available sealants seem not to reduce the rate of CSF leakage in spine surgery. In endoscopic and minimally invasive surgery, the CSF leakage rate is less frequent compared with open, conventional surgery regardless of sealant use
    corecore