3 research outputs found

    Blended learning environments to foster self-directed learning

    Get PDF
    This book on blended learning environments to foster self-directed learning highlights the focus on research conducted in several teaching and learning contexts where blended learning had been implemented and focused on the fostering of self-directed learning. Several authors have contributed to the book, and each chapter provides a unique perspective on blended learning and self-directed learning research. From each chapter, it becomes evident that coherence on the topics mentioned is established. One of the main aspects drawn in this book, and addressed by several authors in the book, is the use of the Community of Inquiry (CoI) framework when implementing teaching and learning strategies in blended learning environments to foster self-directed learning. This notion of focusing on the CoI framework is particularly evident in both theoretical and empirical dissemination presented in this book. What makes this book unique is the fact that researchers and peers in varied fields would benefit from the findings presented by each chapter, albeit theoretical, methodological or empirical in nature – this, in turn, provides opportunities for future research endeavours to further the narrative of how blended learning environments can be used to foster self-directed learning

    Blended learning environments to foster self-directed learning

    Get PDF
    This book on blended learning environments to foster self-directed learning highlights the focus on research conducted in several teaching and learning contexts where blended learning had been implemented and focused on the fostering of self-directed learning. Several authors have contributed to the book, and each chapter provides a unique perspective on blended learning and self-directed learning research. From each chapter, it becomes evident that coherence on the topics mentioned is established. One of the main aspects drawn in this book, and addressed by several authors in the book, is the use of the Community of Inquiry (CoI) framework when implementing teaching and learning strategies in blended learning environments to foster self-directed learning. This notion of focusing on the CoI framework is particularly evident in both theoretical and empirical dissemination presented in this book. What makes this book unique is the fact that researchers and peers in varied fields would benefit from the findings presented by each chapter, albeit theoretical, methodological or empirical in nature – this, in turn, provides opportunities for future research endeavours to further the narrative of how blended learning environments can be used to foster self-directed learning

    Health risk posed by direct ingestion of yeasts from polluted river water

    No full text
    River water is an essential human resource that may be contaminated with hazardous microorganisms. However, the risk of yeast infection through river water exposure is unclear because it is highly dependant on individual susceptibility and has therefore not been well-studied, to date. To evaluate this undefined risk, we analysed the fungal communities in less polluted (LP) and highly polluted (HP) river water, as determined using principal coordinate analysis of pollution indicators. We enumerated culturable yeasts using a thermally selective isolation procedure (37 °C) and thus promoted the growth of potentially opportunistic species. Yeast species identified as clinically relevant were then tested for antifungal resistance. In addition, we propose a quantitative microbial risk assessment (QMRA) framework to quantitatively assess the potential risk of yeast infection. Our results indicated that pollution levels significantly altered fungal communities (p = 0.007) and that genera representing opportunistic and pathogenic members were significantly more abundant in HP waters (p = 0.038). Additionally, the yeast species Candida glabrata and Clavispora lusitaniae positively correlated with other pollution indicators, demonstrating the species' indicator potential. Our QMRA results further indicate that higher risk of infection is associated with increased water pollution levels (considering both physicochemical and bacterial indicators). Furthermore, yeast species with higher pathogenic potential present an increased risk of infection despite lower observed concentrations in the river water. Interestingly, the bloom of Meyerozyma guilliermondii during the wet season suggests that other environmental factors, such as dissolved oxygen levels and water turbulence, might affect growth characteristics of yeasts in river water, which consequently affects the distribution of annual infection risks. The presence of antifungal resistant yeasts, observed in this study, could further contribute to variation in risk distribution. Research on the ecophysiology of yeasts in these environments is therefore necessary to ameliorate the uncertainty and sensitivity of the proposed QMRA model. In addition to the vital knowledge on opportunistic and pathogenic yeast occurrence in river water and their observed association with pollution, this study provides valuable methods and insights to initiate future QMRAs of yeast infections.This work was supported by the Water Research Commission (WRC) of South Africa (Project No: K5/2019/2020–00137). Ms Heidi Steffen received personal funding from the National Research Foundation (South Africa). The work of João Brandão received financial support from CESAM (UID/AMB/50017-POCI-01–0145-FEDER-007638) and CITAB (UID/AGR/04033/2019), via FCT/MCTES, from national funds (PIDDAC), co-founded by FEDER, (PT2020 Partnership Agreement and Compete 2020).info:eu-repo/semantics/publishedVersio
    corecore