425 research outputs found
Online Reinforcement Learning for Dynamic Multimedia Systems
In our previous work, we proposed a systematic cross-layer framework for
dynamic multimedia systems, which allows each layer to make autonomous and
foresighted decisions that maximize the system's long-term performance, while
meeting the application's real-time delay constraints. The proposed solution
solved the cross-layer optimization offline, under the assumption that the
multimedia system's probabilistic dynamics were known a priori. In practice,
however, these dynamics are unknown a priori and therefore must be learned
online. In this paper, we address this problem by allowing the multimedia
system layers to learn, through repeated interactions with each other, to
autonomously optimize the system's long-term performance at run-time. We
propose two reinforcement learning algorithms for optimizing the system under
different design constraints: the first algorithm solves the cross-layer
optimization in a centralized manner, and the second solves it in a
decentralized manner. We analyze both algorithms in terms of their required
computation, memory, and inter-layer communication overheads. After noting that
the proposed reinforcement learning algorithms learn too slowly, we introduce a
complementary accelerated learning algorithm that exploits partial knowledge
about the system's dynamics in order to dramatically improve the system's
performance. In our experiments, we demonstrate that decentralized learning can
perform as well as centralized learning, while enabling the layers to act
autonomously. Additionally, we show that existing application-independent
reinforcement learning algorithms, and existing myopic learning algorithms
deployed in multimedia systems, perform significantly worse than our proposed
application-aware and foresighted learning methods.Comment: 35 pages, 11 figures, 10 table
- …