3,858 research outputs found
A multi-exon deletion within WWOX is associated with a 46,XY disorder of sex development
Disorders of sex development (DSD) are congenital conditions where chromosomal, gonad or genital development is atypical. In a significant proportion of 46,XY DSD cases it is not possible to identify a causative mutation, making genetic counseling difficult and potentially hindering optimal treatment. Here, we describe the analysis of a 46,XY DSD patient that presented at birth with ambiguous genitalia. Histological analysis of the surgically removed gonads showed bilateral undifferentiated gonadal tissue and immature testis, both containing malignant germ cells. We screened genomic DNA from this patient for deletions and duplications using an Illumina whole-genome SNP microarray. This analysis revealed a heterozygous deletion within the WWOX gene on chromosome 16, removing exons 6-8. Analysis of parental DNA showed that the deletion was inherited from the mother. cDNA analysis confirmed that the deletion maintained the reading frame, with exon 5 being spliced directly onto exon 9. This deletion is the first description of a germline rearrangement affecting the coding sequence of WWOX in humans. Previously described Wwox knockout mouse models showed gonadal abnormalities, supporting a role for WWOX in human gonad development
Polygenic risk scores for Alzheimer's disease are related to dementia risk in APOE ɛ4 negatives
Introduction: Studies examining the effect of polygenic risk scores (PRS) for Alzheimer's disease (AD) and apolipoprotein E (APOE) genotype on incident dementia in very old individuals are lacking. /
Methods: A population‐based sample of 2052 individuals ages 70 to 111, from Sweden, was followed in relation to dementia. AD‐PRSs including 39, 57, 1333, and 13,942 single nucleotide polymorphisms (SNPs) were used. /
Results: AD‐PRSs (including 39 or 57 SNPs) were associated with dementia (57‐SNPs AD‐PRS: hazard ratio 1.09, confidence interval 1.01–1.19, P = .03), particularly in APOE ɛ4 non‐carriers (57‐SNPs AD‐PRS: 1.15, 1.05–1.27, P = 4 × 10–3, 39‐SNPs AD‐PRS: 1.22, 1.10–1.35, P = 2 × 10–4). No association was found with the other AD‐PRSs. Further, APOE ɛ4 was associated with increased risk of dementia (1.60, 1.35–1.92, P = 1 × 10–7). In those aged ≥95 years, the results were similar for the AD‐PRSs, while APOE ɛ4 only predicted dementia in the low‐risk tertile of AD‐PRSs. /
Discussion: These results provide information to identify individuals at increased risk of dementia
Haplotype reference consortium panel: Practical implications of imputations with large reference panels
Recently, the Haplotype Reference Consortium (HRC) released a large imputation panel that allows more accurate imputation of genetic variants. In this study, we compared a set of directly assayed common and rare variants from an exome array to imputed genotypes, that is, 1000 genomes project (1000GP) and HRC. We showed that imputation using the HRC panel improved the concordance between assayed and imputed genotypes at common, and especially, low-frequency variants. Furthermore, we performed a genome-wide association meta-analysis of vertical cup-disc ratio, a highly heritable endophenotype of glaucoma, in four cohorts using 1000GP and HRC imputations. We compared the results of the meta-analysis using 1000GP to the meta-analysis results using HRC. Overall, we found that using HRC imputation significantly improved P values (P = 3.07 × 10(-61) ), particularly for suggestive variants. Both meta-analyses were performed in the same sample size, yet we found eight genome-wide significant loci in the HRC-based meta-analysis versus seven genome-wide significant loci in the 1000GP-based meta-analysis. This study provides supporting evidence of the new avenues for gene discovery and fine mapping that the HRC imputation panel offers
Adverse prognostic and predictive significance of low DNA-dependent protein kinase catalytic subunit (DNA-PKcs) expression in early-stage breast cancers
Background: DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a serine threonine kinase belonging to the PIKK family (phosphoinositide 3-kinase-like-family of protein kinase), is a critical component of the non-homologous end joining (NHEJ) pathway required for the repair of DNA double strand breaks. DNA-PKcs may be involved in breast cancer pathogenesis. Methods: We evaluated clinicopathological significance of DNA-PKcs protein expression in 1161 tumours and DNA-PKcs mRNA expression in 1950 tumours. We correlated DNA-PKcs to other markers of aggressive phenotypes, DNA repair, apoptosis and cell cycle regulation. Results: Low DNA-PKcs protein expression was associated with higher tumour grade, higher mitotic index, tumour de-differentiation and tumour type (ps<0.05). Absence of BRCA1, low XRCC1/SMUG1/APE1/Polβ were also more likely in low DNA-PKcs expressing tumours (ps<0.05). Low DNA-PKcs protein expression was significantly associated with worse breast cancer specific survival (BCCS) in univariate and multivariate analysis (ps<0.01). At the mRNA level, low DNA-PKcs was associated with PAM50.Her2 and PAM50.LumA molecular phenotypes (ps<0.01) and poor BCSS. In patients with ER positive tumours who received endocrine therapy, low DNA-PKcs (protein and mRNA) was associated with poor survival. In ER negative patients, low DNA-PKcs mRNA remains significantly associated with adverse outcome. Conclusions: Our study suggests that low DNA-PKcs expression may have prognostic and predictive significance in breast cancers
Structural basis for CRISPR RNA-guided DNA recognition by Cascade
The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and low-resolution structure of Cascade and show how it recognizes double-stranded DNA (dsDNA) targets in a sequence-specific manner. Cascade is a 405-kDa complex comprising five functionally essential CRISPR-associated (Cas) proteins (CasA1B2C6D1E1) and a 61-nucleotide CRISPR RNA (crRNA) with 5′-hydroxyl and 2′,3′-cyclic phosphate termini. The crRNA guides Cascade to dsDNA target sequences by forming base pairs with the complementary DNA strand while displacing the noncomplementary strand to form an R-loop. Cascade recognizes target DNA without consuming ATP, which suggests that continuous invader DNA surveillance takes place without energy investment. The structure of Cascade shows an unusual seahorse shape that undergoes conformational changes when it binds target DNA.
Longitudinal proxy measurements in multiple sclerosis: patient-proxy agreement on the impact of MS on daily life over a period of two years
Background: The use of self- report measurements in clinical settings is increasing. However, in patients with limitations that interfere with reliable self- assessment such as cognitive impairment or mood disturbances, as may be the case in multiple sclerosis ( MS), data collection might be problematic. In these situations, information obtained from proxy respondents ( e. g. partners) may replace self- ratings. The aim of this study was to examine the value of proxy ratings at separate points in time and to assess patient- proxy agreement on possible changes in disease impact of MS. Methods: Fifty- six MS patients and their partners completed the Multiple Sclerosis Impact Scale ( MSIS- 29) at baseline and follow- up, two years later. Patient- proxy agreement was assessed at both time points by calculating intraclass correlation coefficients ( ICCs), exact and global agreement and the mean directional differences between groups. Agreement of change over time was assessed by calculating ICCs between change scores. In parallel, global ratings of both patients and proxy respondents of the extent to which the patient had improved or deteriorated over the past two years were collected to validate possible changes on the MSIS- 29. Results: At both time points, agreement on the physical scale was higher than agreement on the psychological scale ( ICCs at baseline were 0.81 for the physical scale and 0.72 for the psychological scale; at follow- up, the ICC values were 0.86 and 0.65 respectively). At follow- up, statistically significant mean differences between patients and proxies were noted for the physical scale (- 4.8 +/- 12.7, p = 0.006) and the psychological scale (- 8.9 +/- 18.8, p = 0.001). Agreement between change scores on the MSIS- 29 was fair ( ICC < 0.60). Our analyses suggest that the validity of measuring changes over time might be better for proxy respondents compared to patients. Conclusion: Proxy respondents could act as a reliable source of information in cross- sectional studies. Moreover, results suggested that agreement on change over time might be better for proxy respondents compared to patients. Although this remarkable finding should be interpreted cautiously because of several limitations of the study, it does plead for further investigation of this important topic
Fourier Magnetic Imaging with Nanoscale Resolution and Compressed Sensing Speed-up using Electronic Spins in Diamond
Optically-detected magnetic resonance using Nitrogen Vacancy (NV) color
centres in diamond is a leading modality for nanoscale magnetic field imaging,
as it provides single electron spin sensitivity, three-dimensional resolution
better than 1 nm, and applicability to a wide range of physical and biological
samples under ambient conditions. To date, however, NV-diamond magnetic imaging
has been performed using real space techniques, which are either limited by
optical diffraction to 250 nm resolution or require slow, point-by-point
scanning for nanoscale resolution, e.g., using an atomic force microscope,
magnetic tip, or super-resolution optical imaging. Here we introduce an
alternative technique of Fourier magnetic imaging using NV-diamond. In analogy
with conventional magnetic resonance imaging (MRI), we employ pulsed magnetic
field gradients to phase-encode spatial information on NV electronic spins in
wavenumber or k-space followed by a fast Fourier transform to yield real-space
images with nanoscale resolution, wide field-of-view (FOV), and compressed
sensing speed-up.Comment: 31 pages, 10 figure
Foot pain and foot health in an educated population of adults: results from the Glasgow Caledonian University Alumni Foot Health Survey
Abstract Background Foot pain is common amongst the general population and impacts negatively on physical function and quality of life. Associations between personal health characteristics, lifestyle/behaviour factors and foot pain have been studied; however, the role of wider determinants of health on foot pain have received relatively little attention. Objectives of this study are i) to describe foot pain and foot health characteristics in an educated population of adults; ii) to explore associations between moderate-to-severe foot pain and a variety of factors including gender, age, medical conditions/co-morbidity/multi-morbidity, key indicators of general health, foot pathologies, and social determinants of health; and iii) to evaluate associations between moderate-to-severe foot pain and foot function, foot health and health-related quality-of-life. Methods Between February and March 2018, Glasgow Caledonian University Alumni with a working email address were invited to participate in the cross-sectional electronic survey (anonymously) by email via the Glasgow Caledonian University Alumni Office. The survey was constructed using the REDCap secure web online survey application and sought information on presence/absence of moderate-to-severe foot pain, patient characteristics (age, body mass index, socioeconomic status, occupation class, comorbidities, and foot pathologies). Prevalence data were expressed as absolute frequencies and percentages. Multivariate logistic and linear regressions were undertaken to identify associations 1) between independent variables and moderate-to-severe foot pain, and 2) between moderate-to-severe foot pain and foot function, foot health and health-related quality of life. Results Of 50,228 invitations distributed, there were 7707 unique views and 593 valid completions (median age [inter-quartile range] 42 [31–52], 67.3% female) of the survey (7.7% response rate). The sample was comprised predominantly of white Scottish/British (89.4%) working age adults (95%), the majority of whom were overweight or obese (57.9%), and in either full-time or part-time employment (82.5%) as professionals (72.5%). Over two-thirds (68.5%) of the sample were classified in the highest 6 deciles (most affluent) of social deprivation. Moderate-to-severe foot pain affected 236/593 respondents (39.8%). High body mass index, presence of bunions, back pain, rheumatoid arthritis, hip pain and lower occupation class were included in the final multivariate model and all were significantly and independently associated with moderate-to-severe foot pain (p < 0.05), except for rheumatoid arthritis (p = 0.057). Moderate-to-severe foot pain was significantly and independently associated lower foot function, foot health and health-related quality of life scores following adjustment for age, gender and body mass index (p < 0.05). Conclusions Moderate-to-severe foot pain was highly prevalent in a university-educated population and was independently associated with female gender, high body mass index, bunions, back pain, hip pain and lower occupational class. Presence of moderate-to-severe foot pain was associated with worse scores for foot function, foot health and health-related quality-of-life. Education attainment does not appear to be protective against moderate-to-severe foot pain
Screening of DUB activity and specificity by MALDI-TOF mass spectrometry
Deubiquitylases (DUBs) are key regulators of the ubiquitin system which cleave ubiquitin moieties from proteins and polyubiquitin chains. Several DUBs have been implicated in various diseases and are attractive drug targets. We have developed a sensitive and fast assay to quantify in vitro DUB enzyme activity using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Unlike other current assays, this method uses unmodified substrates, such as diubiquitin topoisomers. By analyzing 42 human DUBs against all diubiquitin topoisomers we provide an extensive characterization of DUB activity and specificity. Our results confirm the high specificity of many members of the OTU and JAMM DUB families and highlight that all USPs tested display low linkage selectivity. We also demonstrate that this assay can be deployed to assess the potency and specificity of DUB inhibitors by profiling 11 compounds against a panel of 32 DUBs
- …