8,681 research outputs found
ARAS: an automated radioactivity aliquoting system for dispensing solutions containing positron-emitting radioisotopes.
BackgroundAutomated protocols for measuring and dispensing solutions containing radioisotopes are essential not only for providing a safe environment for radiation workers but also to ensure accuracy of dispensed radioactivity and an efficient workflow. For this purpose, we have designed ARAS, an automated radioactivity aliquoting system for dispensing solutions containing positron-emitting radioisotopes with particular focus on fluorine-18 ((18)F).MethodsThe key to the system is the combination of a radiation detector measuring radioactivity concentration, in line with a peristaltic pump dispensing known volumes.ResultsThe combined system demonstrates volume variation to be within 5 % for dispensing volumes of 20 ÎĽL or greater. When considering volumes of 20 ÎĽL or greater, the delivered radioactivity is in agreement with the requested amount as measured independently with a dose calibrator to within 2 % on average.ConclusionsThe integration of the detector and pump in an in-line system leads to a flexible and compact approach that can accurately dispense solutions containing radioactivity concentrations ranging from the high values typical of [(18)F]fluoride directly produced from a cyclotron (~0.1-1 mCi ÎĽL(-1)) to the low values typical of batches of [(18)F]fluoride-labeled radiotracers intended for preclinical mouse scans (~1-10 ÎĽCi ÎĽL(-1))
Experimental implementation of an adiabatic quantum optimization algorithm
We report the realization of a nuclear magnetic resonance computer with three
quantum bits that simulates an adiabatic quantum optimization algorithm.
Adiabatic quantum algorithms offer new insight into how quantum resources can
be used to solve hard problems. This experiment uses a particularly well suited
three quantum bit molecule and was made possible by introducing a technique
that encodes general instances of the given optimization problem into an easily
applicable Hamiltonian. Our results indicate an optimal run time of the
adiabatic algorithm that agrees well with the prediction of a simple
decoherence model.Comment: REVTeX, 5 pages, 4 figures, improved lay-out; accepted for
publication in Physical Review Letter
Design of an Ecological Vertical Separation Assistance Cockpit Display
A tactical navigation support tool was designed to effectively deal with conflict situations in the vertical plane, while preserving travel freedom as much as possible. Based on Ecological Interface Design principles, the Vertical Separation Assistance Display is developed as an extension to the existing Vertical Situation Display. Functional information is presented via overlays that show pilots how their vertical maneuvering possibilities are constrained by ownship performance, and by limits imposed by surrounding traffic. A questionnaire-based evaluation shows that the ecological overlays considerably improved pilot traffic awareness in vertical conflict situations
Recommendations for riparian ecosystem management based on the general frame defined in EUFORGEN and results from EUROPOP
International audienc
Probing spacetime foam with extragalactic sources
Due to quantum fluctuations, spacetime is probably ``foamy'' on very small
scales. We propose to detect this texture of spacetime foam by looking for
core-halo structures in the images of distant quasars. We find that the Very
Large Telescope interferometer will be on the verge of being able to probe the
fabric of spacetime when it reaches its design performance. Our method also
allows us to use spacetime foam physics and physics of computation to infer the
existence of dark energy/matter, independent of the evidence from recent
cosmological observations.Comment: LaTeX, 11 pages, 1 figure; version submitted to PRL; several
references added; very useful comments and suggestions by Eric Perlman
incorporate
The temporal sensitivity to the tactile-induced double flash illusion mediates the impact of beta oscillations on schizotypal personality traits
The coherent experience of the self and the world depends on the ability to integrate vs. segregate sensory information. Optimal temporal integration between the senses is mediated by oscillatory properties of neural activity. Previous research showed reduced temporal sensitivity to multisensory events in schizotypy, a personality trait linked to schizophrenia. Here we used the tactileinduced Double-Flash-Illusion (tDFI) to investigate the tactile-to-visual temporal sensitivity in schizotypy, as indexed by the temporal window of illusion (TWI) and its neural underpinnings. We measured EEG oscillations within the beta band, recently shown to correlate with the tDFI. We found individuals with higher schizotypal traits to have wider TWI and slower beta waves accounting for the temporal window within which they perceive the illusion. Our results indicate reduced tactile-to-visual temporal sensitivity to mediate the effect of slowed oscillatory beta activity on schizotypal personality traits. We conclude that slowed oscillatory patterns might constitute an early marker for psychosis proneness
Spontaneous Lorentz Breaking and Massive Gravity
We study a theory where the presence of an extra spin-two field coupled to
gravity gives rise to a phase with spontaneously broken Lorentz symmetry. In
this phase gravity is massive, and the Weak Equivalence Principle is respected.
The newtonian potentials are in general modified, but we identify an
non-perturbative symmetry that protects them. The gravitational waves sector
has a rich phenomenology: sources emit a combination of massless and massive
gravitons that propagate with distinct velocities and also oscillate. Since
their velocities differ from the speed of light, the time of flight difference
between gravitons and photons from a common source could be measured.Comment: 4 page
Self-reported domain-specific and accelerometer-based physical activity and sedentary behaviour in relation to psychological distress among an urban Asian population
Background: The interpretation of previous studies on the association of physical activity and sedentary behaviour with psychological health is limited by the use of mostly self-reported physical activity and sedentary behaviour, and a focus on Western populations. We aimed to explore the association of self-reported and devise-based measures of physical activity and sedentary behaviour domains on psychological distress in an urban multi-ethnic Asian population.
Methods: From a population-based cross-sectional study of adults aged 18-79 years, data were used from an overall sample (n = 2653) with complete self-reported total physical activity/sedentary behaviour and domain-specific physical activity data, and a subsample (n = 703) with self-reported domain-specific sedentary behaviour and accelerometry data. Physical activity and sedentary behaviour data were collected using the Global Physical Activity Questionnaire (GPAQ), a domain-specific sedentary behaviour questionnaire and accelerometers. The Kessler Screening Scale (K6) and General Health Questionnaire (GHQ-12) were used to assess psychological distress. Logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals, adjusted for socio-demographic and lifestyle characteristics.
Results: The sample comprised 45.0% men (median age = 45.0 years). The prevalence of psychological distress based on the K6 and GHQ-12 was 8.4% and 21.7%, respectively. In the adjusted model, higher levels of self-reported moderate-to-vigorous physical activity (MVPA) were associated with significantly higher odds for K6 (OR = 1.47 [1.03-2.10]; p-trend = 0.03) but not GHQ-12 (OR = 0.97 [0.77-1.23]; p-trend = 0.79), when comparing the highest with the lowest tertile. Accelerometry-assessed MVPA was not significantly associated with K6 (p-trend = 0.50) nor GHQ-12 (p-trend = 0.74). The highest tertile of leisure-time physical activity, but not work- or transport-domain activity, was associated with less psychological distress using K6 (OR = 0.65 [0.43-0.97]; p-trend = 0.02) and GHQ-12 (OR = 0.72 [0.55-0.93]; p-trend = 0.01). Self-reported sedentary behaviour was not associated with K6 (p-trend = 0.90) and GHQ-12 (p-trend = 0.33). The highest tertile of accelerometry-assessed sedentary behaviour was associated with significantly higher odds for K6 (OR = 1.93 [1.00-3.75]; p-trend = 0.04), but not GHQ-12 (OR = 1.34 [0.86-2.08]; p-trend = 0.18).
Conclusions: Higher levels of leisure-time physical activity and lower levels of accelerometer-based sedentary behaviour were associated with lower psychological distress. This study underscores the importance of assessing accelerometer-based and domain-specific activity in relation to mental health, instead of solely focusing on total volume of activity
Single-electron tunneling in InP nanowires
We report on the fabrication and electrical characterization of field-effect
devices based on wire-shaped InP crystals grown from Au catalyst particles by a
vapor-liquid-solid process. Our InP wires are n-type doped with diameters in
the 40-55 nm range and lengths of several microns. After being deposited on an
oxidized Si substrate, wires are contacted individually via e-beam fabricated
Ti/Al electrodes. We obtain contact resistances as low as ~10 kOhm, with minor
temperature dependence. The distance between the electrodes varies between 0.2
and 2 micron. The electron density in the wires is changed with a back gate.
Low-temperature transport measurements show Coulomb-blockade behavior with
single-electron charging energies of ~1 meV. We also demonstrate energy
quantization resulting from the confinement in the wire.Comment: 4 pages, 3 figure
- …