470 research outputs found

    A high‐quality functional genome assembly of delia radicum L. (diptera: anthomyiidae) annotated from egg to adult

    Get PDF
    Abstract Belowground herbivores are overseen and underestimated, even though they can cause significant economic losses in agriculture. The cabbage root fly Delia radicum (Anthomyiidae) is a common pest in Brassica species, including agriculturally important crops, such as oilseed rape. The damage is caused by the larvae, which feed specifically on the taproots of Brassica plants until they pupate. The adults are aboveground‐living generalists feeding on pollen and nectar. Female flies are attracted by chemical cues in Brassica plants for oviposition. An assembled and annotated genome can elucidate which genetic mechanisms underlie the adaptation of D . radicum to its host plants and their specific chemical defences, in particular isothiocyanates. Therefore, we assembled, annotated and analysed the D . radicum genome using a combination of different next‐generation sequencing and bioinformatic approaches. We assembled a chromosome‐level D . radicum genome using PacBio and Hi‐C Illumina sequence data. Combining Canu and 3D‐DNA genome assembler, we constructed a 1.3 Gbp genome with an N50 of 242 Mbp and 6 pseudo‐chromosomes. To annotate the assembled D . radicum genome, we combined homology‐, transcriptome‐ and ab initio‐prediction approaches. In total, we annotated 13,618 genes that were predicted by at least two approaches. We analysed egg, larval, pupal and adult transcriptomes in relation to life‐stage specific molecular functions. This high‐quality annotated genome of D . radicum is a first step to understanding the genetic mechanisms underlying host plant adaptation. As such, it will be an important resource to find novel and sustainable approaches to reduce crop losses to these pests

    Regulation of microglial TMEM119 and P2RY12 immunoreactivity in multiple sclerosis white and grey matter lesions is dependent on their inflammatory environment

    Get PDF
    Multiple Sclerosis (MS) is the most common cause of acquired neurological disability in young adults, pathologically characterized by leukocyte infiltration of the central nervous system, demyelination of the white and grey matter, and subsequent axonal loss. Microglia are proposed to play a role in MS lesion formation, however previous literature has not been able to distinguish infiltrated macrophages from microglia. Therefore, in this study we utilize the microglia-specific, homeostatic markers TMEM119 and P2RY12 to characterize their immunoreactivity in MS grey matter lesions in comparison to white matter lesions. Furthermore, we assessed the immunological status of the white and grey matter lesions, as well as the responsivity of human white and grey matter derived microglia to inflammatory mediators. We are the first to show that white and grey matter lesions in post-mortem human material differ in their immunoreactivity for the homeostatic microglia-specific markers TMEM119 and P2RY12. In particular, whereas immunoreactivity for TMEM119 and P2RY12 is decreased in the center of WMLs, immunoreactivity for both markers is not altered in GMLs. Based on data from post-mortem human microglia cultures, treated with IL-4 or IFNÎł+LPS and on counts of CD3+ or CD20+ lymphocytes in lesions, we show that downregulation of TMEM119 and P2RY12 immunoreactivity in MS lesions corresponds with the presence of lymphocytes and lymphocyte-derived cytokines within the parenchyma but not in the meninges. Furthermore, the presence of TMEM119+ and partly P2RY12+ microglia in pre-active lesions as well as in the rim of active white and grey matter lesions, in addition to TMEM119+ and P2RY12+ rod-like microglia in subpial grey matter lesions suggest that blocking the entrance of lymphocytes into the CNS of MS patients may not interfere with all possible effects of TMEM119+ and P2RY12+ microglia in both white and grey matter MS lesions

    Yeast Infections after Esophagectomy:A Retrospective Analysis

    Get PDF
    Esophageal malignancy is a disease with poor prognosis. Curative therapy incorporates surgery and is burdensome with high rates of infection morbidity and mortality. The role of yeast as causative organisms of post-esophagectomy infections is poorly defined. Consequently, the benefits of specific antifungal prophylactic therapy in improving patient outcome are unclear. Therefore, this study aimed at investigating the incidence of yeast infections at the University Medical Center Groningen among 565 post-esophagectomy patients between 1991 and 2017. The results show that 7.3% of the patients developed a yeast infection after esophageal resection with significantly increased incidence among patients suffering from diabetes mellitus. For patients with yeast infections, higher Acute Physiology and Chronic Health Evaluation (APACHE) II scores, more frequent intensive care unit readmissions, prolonged hospital stays and higher mortality rates were observed. One-year survival was significantly lower for patients with a yeast infection, as well as diabetes mellitus and yeast-positive pleural effusion. We conclude that the incidence of yeast infections following esophagectomy is considerable, and that patients with diabetes mellitus are at increased risk. Furthermore, yeast infections are associated with higher complication rates and mortality. These observations encourage further prospective investigations on the possible benefits of antifungal prophylactic therapy for esophagectomy patients

    Monocyte behaviour and tissue transglutaminase expression during experimental autoimmune encephalomyelitis in transgenic CX3CR1gfp/gfp mice

    Get PDF
    Leukocyte infiltration into the central nervous system (CNS) is a key pathological feature in multiple sclerosis (MS) and the MS animal model experimental autoimmune encephalomyelitis (EAE). Recently, preventing leukocyte influx into the CNS of MS patients is the main target of MS therapies and insight into cell behaviour in the circulation is needed for further elucidation of such therapies. In this study, we aimed at in vivo visualization of monocytes in a time-dependent manner during EAE. Using intravital two-photon microscopy (IVM), we imaged CX3CR1gfp/gfp mice during EAE, visualizing CX3CR1-GFP+ monocytes and their dynamics in the spinal cord vasculature. Our observations showed that intraluminal crawling of CX3CR1-GFP+ monocytes increased even before the clinical onset of EAE due to immunization of the animals. Furthermore, intraluminal crawling remained elevated during ongoing clinical disease. Besides, the displacement of these cells was larger during the peak of EAE compared to the control animals. In addition, we showed that the enzyme tissue transglutaminase (TG2), which is present in CNS-infiltrated cells in MS patients, is likewise found in CX3CR1-GFP+ monocytes in the spinal cord lesions and at the luminal side of the vasculature during EAE. It might thereby contribute to adhesion and crawling of monocytes, facilitating extravasation into the CNS. Thus, we put forward that interference with monocyte adhesion, by e.g. inhibition of TG2, should be applied at a very early stage of EAE and possibly MS, to effectively combat subsequent pathology

    Astrocyte-derived tissue Transglutaminase affects fibronectin deposition, but not aggregation, during cuprizone-induced demyelination

    Get PDF
    Astrogliosis as seen in Multiple Sclerosis (MS) develops into astroglial scarring, which is beneficial because it seals off the site of central nervous system (CNS) damage. However, astroglial scarring also forms an obstacle that inhibits axon outgrowth and (re) myelination in brain lesions. This is possibly an important cause for incomplete remyelination in the CNS of early stage MS patients and for failure in remyelination when the disease progresses. In this study we address whether under demyelinating conditions in vivo, tissue Transglutaminase (TG2), a Ca2+-dependent enzyme that catalyses posttranslational modification of proteins, contributes to extracellular matrix (ECM) deposition and/or aggregation. We used the cuprizone model for de- and remyelination. TG2 immunoreactivity and enzymatic activity time-dependently appeared in astrocytes and ECM, respectively, in the corpus callosum of cuprizone-treated mice. Enhanced presence of soluble monomeric and multimeric fibronectin was detected during demyelination, and fibronectin immunoreactivity was slightly decreased in cuprizone-treated TG2(-/-) mice. In vitro TG2 overexpression in astrocytes coincided with more, while knock-down of TG2 with less fibronectin production. TG2 contributes, at least partly, to fibronectin production, and may play a role in fibronectin deposition during cuprizone-induced demyelination. Our observations are of interest in understanding the functional implications of TG2 during astrogliosis

    Not only the seed matters: Farmers’ perceptions of sources for banana planting materials in Uganda

    Get PDF
    The adoption of improved seed and other planting material in developing countries is unsatisfactory, given their potential to increase agricultural productivity. To arrive at a better understanding of the observed adoption rates, it is not only relevant to know which cultivars and variety traits are attractive to farmers: the sourcing planting material by smallholder farmers is often associated in literature with social ties and cultural norms. In this study, means‐end chain analysis was applied to understand farmers’ perceptions on formal and informal sources of banana planting material. The means‐end chain analysis allows respondents to select and verbalize their own constructs to evaluate a product or service. These personally relevant constructs are subsequently linked to their personal goals via laddering interviews. We interviewed 31 Ugandan banana farmers from Western and Central region. Farmers associated formal sources with improved cultivars, tissue culture plantlets and low levels of diversity. Informal seed sources were associated with traditional cultivars, suckers and high levels of diversity. The goals farmers pursued while acquiring planting material, such as financial gains, food security, and to sustain and develop the household, were fairly similar among farmers. Larger, male farmers and Central‐region farmers aimed and preferred to pursue these goals via different means than smaller, female and Western‐region farmers did. These differences among farmers preferences for particular sources indicate that not only cultivar traits should be tailored to farmers’ preferences and needs, but also the characteristics of the sources from which farmers access planting material

    Distinct gene expression in demyelinated white and grey matter areas of patients with multiple sclerosis

    Get PDF
    Demyelination of the central nervous system is a prominent pathological hallmark of multiple sclerosis and affects both white and grey matter. However, demyelinated white and grey matter exhibit clear pathological differences, most notably the presence or absence of inflammation and activated glial cells in white and grey matter, respectively. In order to gain more insight into the differential pathology of demyelinated white and grey matter areas, we micro-dissected neighbouring white and grey matter demyelinated areas as well as normal-appearing matter from leucocortical lesions of human post-mortem material and used these samples for RNA sequencing. Our data show that even neighbouring demyelinated white and grey matter of the same leucocortical have a distinct gene expression profile and cellular composition. We propose that, based on their distinct expression profile, pathological processes in neighbouring white and grey matter are likely different which could have implications for the efficacy of treating grey matter lesions with current anti-inflammatory-based multiple sclerosis drugs

    Differences in Volatile Profiles of Turnip Plants Subjected to Single and Dual Herbivory Above- and Belowground

    Get PDF
    Plants attacked by herbivorous insects emit volatile organic compounds that are used by natural enemies to locate their host or prey. The composition of the blend is often complex and specific. It may vary qualitatively and quantitatively according to plant and herbivore species, thus providing specific information for carnivorous arthropods. Most studies have focused on simple interactions that involve one species per trophic level, and typically have investigated the aboveground parts of plants. These investigations need to be extended to more complex networks that involve multiple herbivory above- and belowground. A previous study examined whether the presence of the leaf herbivore Pieris brassicae on turnip plants (Brassica rapa subsp. rapa) influences the response of Trybliographa rapae, a specialist parasitoid of the root feeder Delia radicum. It showed that the parasitoid was not attracted by volatiles emitted by plants under simultaneous attack. Here, we analyzed differences in the herbivore induced plant volatile (HIPV) mixtures that emanate from such infested plants by using Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA). This multivariate model focuses on the differences between odor blends, and highlights the relative importance of each compound in an HIPV blend. Dual infestation resulted in several HIPVs that were present in both isolated infestation types. However, HIPVs collected from simultaneously infested plants were not the simple combination of volatiles from isolated forms of above- and belowground herbivory. Only a few specific compounds characterized the odor blend of each type of damaged plant. Indeed, some compounds were specifically induced by root herbivory (4-methyltridecane and salicylaldehyde) or shoot herbivory (methylsalicylate), whereas hexylacetate, a green leaf volatile, was specifically induced after dual herbivory. It remains to be determined whether or not these minor quantitative variations, within the background of more commonly induced odors, are involved in the reduced attraction of the root feeder’s parasitoid. The mechanisms involved in the specific modification of the odor blends emitted by dual infested turnip plants are discussed in the light of interferences between biosynthetic pathways linked to plant responses to shoot or root herbivory
    • 

    corecore