9 research outputs found

    Vegetables affect the expression of genes involved in carcinogenic and anticarcinogenic processes in the lungs of female C57BL/6 mice

    No full text
    Worldwide, lung cancer is the most prevalent and lethal malignant disease. In addition to avoidance of the most predominant risk factor, i.e., tobacco use, consumption of high amounts of vegetables and fruits could be an effective means of preventing lung cancer. However, the molecular mechanisms underlying lung cancer risk reduction by vegetables are not clear. In the present study, the effect of vegetables on gene expression changes in the lungs of female C57Bl/6 mice was investigated using cDNA microarray technology. The mice were fed 1 of 8 diets for 2 wk: a control diet containing no vegetables (diet 1); a diet containing a vegetable mixture at 100 (diet 2, 10% dose), 200 (diet 3, 20% dose), or 400 (diet 4, 40% dose) g/kg; or a diet containing cauliflower at 70 (diet 5, 7% dose); carrots at 73 (diet 6, 7.3% dose); peas at 226 (diet 7, 22.6% dose); or onions at 31 (diet 8, 3.1% dose) g/kg. The vegetable mixture consisted of these 4 individual vegetables. After the mice were killed, the lungs were removed and total RNA was isolated from the lungs for expression analysis of 602 genes involved in pathways of (anti)-carcinogenesis. The results of this study suggest that individual vegetables have a higher potential of modulating genes (5 from the 8 modulated genes) in favor of lung cancer risk prevention, in comparison with the vegetable mixture (2 from the 7 modulated genes); the other gene modulations are expected to enhance lung cancer risk. The pathways involved were miscellaneous and included cell growth, apoptosis, biotransformation, and immune response. Furthermore, carrots were able to modulate most gene expressions, and most of these effects occurred in processes that favored lung cancer risk prevention. The current study provides more insight into the genetic mechanisms by which vegetables, in particular carrots, can prevent lung cancer risk

    Altered vegetable intake affects pivotal carcinogenesis pathways in colon mucosa from adenoma patients and controls

    No full text
    The evidence from epidemiological and experimental studies that vegetables reduce the risk of colorectal cancer is convincing. However, the involved genes and genetic pathways are not clear. The aim of this study was to identify genes that are modulated in vivo in colorectal mucosa by vegetables, and to investigate whether colon adenoma patients respond differently compared with healthy controls. Twenty female adenoma patients and eight healthy controls were randomly split into two groups of ten and four persons, respectively, receiving either a 50% decreased (=75 g/day) or doubled (=300 g/day) intake of vegetables for 2 weeks. In order to assess the effects on gene expression at the target level, colorectal biopsies were collected before and after the intervention. Total RNA was isolated from the biopsies to measure gene expression of 597 genes relevant for responses to xenobiotics by microarray technology, followed by confidence analyses to identify differentially expressed genes. Mainly genes related to cell cycle control and genes for oxidoreductase activities were over-represented in the list of modulated genes. Twenty genes were modulated, which are known to be related to (colon)carcinogenesis. Seven genes were similarly modulated in patients and controls, for example fos proto-oncogene and ornithine decarboxylase. Thirteen genes were modulated differently in patients compared with controls, including cyclooxygenase-2 and human mdm2-A in patients and cytochrome P45027B1, -2C19, -2D6, -2C9 and -3A4 in controls. Almost all the effects on modulating the expression of genes by altering vegetable intake can be mechanistically linked to cellular processes that explain either prevention of colorectal cancer risk by high vegetable intake or increased colorectal cancer risk by low vegetable intake. Furthermore, it seems that vegetables in patients affect genes involved in the late stage of colorectal cancer, whereas in controls genes involved in the initiation phase are modulated

    Comparison of supervised clustering methods to discriminate genotoxic from non-genotoxic carcinogens by gene expression profiling

    No full text
    Prediction of the toxic properties of chemicals based on modulation of gene expression profiles in exposed cells or animals is one of the major applications of toxicogenomics. Previously, we demonstrated that by Pearson correlation analysis of gene expression profiles from treated HepG2 cells it is possible to correctly discriminate and predict genotoxic from non-genotoxic carcinogens. Since to date many different supervised clustering methods for discrimination and prediction tests are available, we investigated whether application of the methods provided by the Whitehead Institute and Stanford University improved our initial prediction. Four different supervised clustering methods were applied for this comparison, namely Pearson correlation analysis (Pearson), nearest shrunken centroids analysis (NSC), K-nearest neighbour analysis (KNN) and Weighted voting (WV). For each supervised clustering method, three different approaches were followed: (1) using all the data points for all treatments, (2) exclusion of the samples with marginally affected gene expression profiles and (3) filtering out the gene expression signals that were hardly altered. On the complete data set, NSC, KNN and WV outperformed the Pearson test, but on the reduced data sets no clear difference was observed. Exclusion of samples with marginally affected profiles improved the prediction by all methods. For the various prediction models, gene sets of different compositions were selected; in these 27 genes appeared three times or more. These 27 genes are involved in many different biological processes and molecular functions, such as apoptosis, cell cycle control, regulation of transcription, and transporter activity, many of them related to the carcinogenic process. One gene, BAX, was selected in all 10 models, while ZFP36 was selected in 9, and AHR, MT1E and TTR in 8. Summarising, this study demonstrates that several supervised clustering methods can be used to discriminate certain genotoxic from non-genotoxic carcinogens by gene expression profiling in vitro in HepG2 cells. None of the methods clearly outperforms the others

    Discrimination of genotoxic from non-genotoxic carcinogens by gene expression profiling

    No full text
    Two general mechanisms are implicated in chemical carcinogenesis. The first involves direct damage to DNA, referred to as genotoxic (GTX), to which the cell responds by repair of the damages, arrest of the cell cycle or induction of apoptosis. The second is non-DNA damaging, non-genotoxic (NGTX), in which a wide variety of cellular processes may be involved. Therefore, it can be hypothesized that modulation of the underlying gene expression patterns is profoundly distinct between GTX and NGTX carcinogens, and thus that expression profiling is applicable for classification of chemical carcinogens as GTX or NGTX. We investigated this hypothesis by analysing modulation of gene expression profiles induced by 20 chemical carcinogens in HepG2 cells with application of cDNA microarrays that contain 597 toxicologically relevant genes. In total, 22 treatments were included, divided in two sets. The training set consisted of 16 treatments (nine genotoxins and seven non-genotoxins) and the validation set of six treatments (three and three). Class discrimination models based on Pearson correlation analyses for the 20 most discriminating genes were developed with data from the training set, where after the models were tested with all data. Using all data, the correctness for classification of the carcinogens from the training set was clearly better than that for the validation set, namely 81 and 33%, respectively. Exclusion of the treatments that had only marginal effects on the expression profiles, improved the discrimination for the training and validation sets to 92 and 100% correctness, respectively. Exclusion of the gene expression signals that were hardly altered also improved classification, namely to 94 and 80%. Therefore, our study proves the principle that gene expression profiling can discriminate carcinogens with major differences in their mode of actions, namely genotoxins versus non-genotoxins

    Applicability of induced sputum for molecular dosimetry of exposure to inhalatory carcinogens: P-32-postlabeling of lipophilic DNA adducts in smokers and nonsmokers

    No full text
    The lung is a major target organ for smoking-associated cancer. We examined the applicability of induced sputum for molecular dosimetry of exposure to tobacco smoke-related carcinogens. Sputum induction was performed by inhalation of 4.5% saline delivered from an ultrasonic nebulizer for a period of up to 21 min in a group of smoking (n = 20) and nonsmoking (n = 24) healthy individuals. Samples were analyzed for total and differential cell counts and cell viability, Subsequently, DNA contents of the samples were isolated, and measurement of lipophilic DNA adducts was done by the P-32-postlabeling assay using nuclease P1 (NP1) and butanol enrichment methods. All subjects tolerated the induction procedure without experiencing any troublesome symptoms, and 90% of smokers (18 of 20) and 88% of nonsmokers (21 of 24) succeeded in producing sufficient amounts of sputum. Total cell counts and percentages of viable cells in smokers were higher than those in nonsmokers (6.7 +/- 6.0 versus 4.7 +/- 6.0 x 10(6), P = 0.40 and 80 +/- 15 versus 63 +/- 17, P = 0.01. respectively). In cell differentials, smokers had lower percentages of bronchoalveolar macrophages and higher percentages of neutrophils (69 +/- 24 versus 92 +/- 5, P = 0.002 and 26 +/- 26 versus 4 +/- 4, P = 0.008, respectively). Using the NP1 digestion method, all smokers and only one nonsmoker showed a diagonal radioactive zone in their adduct maps; adduct levels in smokers were higher than those in nonsmokers (3.1 +/- 1.4 versus 0.6 +/- 0.8/10(8) nucleotides; P = 0.0007), and also, adduct levels were significantly related to smoking indices. Applying the butanol extraction method, however, only half of the smokers and three nonsmokers showed the diagonal radioactive zone in their adduct maps; adduct levels in smokers were higher than those in nonsmokers (4.6 +/- 3.7 versus 1.0 +/- 1.9/10(8) nucleotides; P = 0.02), and the levels of adducts were significantly related to the smoking indices. There was a correlation between the levels of adducts determined by the two enrichment methods (r = 0.7; P = 0.02). Paired comparison showed no differences between the levels of adducts measured by the two methods (P = 0.55). We conclude that induced sputum can serve for molecular dosimetry of inhalatory exposure to carcinogens and that the NP1 version of the P-32-postlabeling assay is a choice of preference for studying smoking-induced DNA adducts in the lower respiratory tract

    Vegetables affect the expression of genes involved in anticarcinogenic processes in the colonic mucosa of C57BL/6 female mice

    No full text
    There is abundant epidemiological evidence that vegetable consumption decreases colorectal cancer (CRC) risk. However, the molecular targets in the genome are mostly unknown. The present study investigated the effects of vegetable consumption on gene expression in the colon mucosa of female C57Bl/6 mice using cDNA microarray technology. Mice were fed one of 8 diets: a control diet containing no vegetables (diet 1); a diet containing 100 g/kg (diet 2, 10% dose), 200 g/kg (diet 3, 20% dose), or 400 g/kg (diet 4, 40% dose) of a vegetable mixture; or a diet containing 70 g/kg of cauliflower (diet 5, 7% dose), 73 g/kg of carrots (diet 6, 7.3% dose), 226 g/kg of peas (diet 7, 22.6% dose); or 31 g/kg of onions (diet 8, 3.1% dose). The vegetable mixture used in diets 2 to 4 consisted of the 4 individual vegetables used in diets 5 to 8: cauliflower (30% wet wt), carrots (30% wet wt), peas (30% wet wt), and onions (10% wet wt). To assess gene expression changes, colonic mucosal cells were collected after the mice were killed. Total RNA was isolated and microarray technology was used to measure the expression levels of 602 genes simultaneously. For 39 genes, significant dose-dependent effects were found, although in general the relations were not linear. For 15 genes, the altered expression could indeed explain reduced cancer risk at various stages of CRC development. Eleven genes were modulated by the vegetable mixture as well as by one or more of the individual vegetables. For 7 of the genes, the modulation by the mixture was due to the effect of a particular vegetable. These genes are of particular interest because they were consistently affected and could be involved in the prevention of CRC by vegetable consumption

    Vegetables affect the expression of genes involved in anticarcinogenic processes in the colonic mucosa of C57BL/6 female mice

    No full text
    There is abundant epidemiological evidence that vegetable consumption decreases colorectal cancer (CRC) risk. However, the molecular targets in the genome are mostly unknown. The present study investigated the effects of vegetable consumption on gene expression in the colon mucosa of female C57Bl/6 mice using cDNA microarray technology. Mice were fed one of 8 diets: a control diet containing no vegetables (diet 1); a diet containing 100 g/kg (diet 2, 10% dose), 200 g/kg (diet 3, 20% dose), or 400 g/kg (diet 4, 40% dose) of a vegetable mixture; or a diet containing 70 g/kg of cauliflower (diet 5, 7% dose), 73 g/kg of carrots (diet 6, 7.3% dose), 226 g/kg of peas (diet 7, 22.6% dose); or 31 g/kg of onions (diet 8, 3.1% dose). The vegetable mixture used in diets 2 to 4 consisted of the 4 individual vegetables used in diets 5 to 8: cauliflower (30% wet wt), carrots (30% wet wt), peas (30% wet wt), and onions (10% wet wt). To assess gene expression changes, colonic mucosal cells were collected after the mice were killed. Total RNA was isolated and microarray technology was used to measure the expression levels of 602 genes simultaneously. For 39 genes, significant dose-dependent effects were found, although in general the relations were not linear. For 15 genes, the altered expression could indeed explain reduced cancer risk at various stages of CRC development. Eleven genes were modulated by the vegetable mixture as well as by one or more of the individual vegetables. For 7 of the genes, the modulation by the mixture was due to the effect of a particular vegetable. These genes are of particular interest because they were consistently affected and could be involved in the prevention of CRC by vegetable consumption
    corecore