39 research outputs found
Selection for Genetic Variation Inducing Pro-Inflammatory Responses under Adverse Environmental Conditions in a Ghanaian Population
BACKGROUND:Chronic inflammation is involved in the pathogenesis of chronic age-associated, degenerative diseases. Pro-inflammatory host responses that are deleterious later in life may originate from evolutionary selection for genetic variation mediating resistance to infectious diseases under adverse environmental conditions. METHODOLOGY/PRINCIPAL FINDINGS:In the Upper-East region of Ghana where infection has remained the leading cause of death, we studied the effect on survival of genetic variations at the IL10 gene locus that have been associated with chronic diseases. Here we show that an IL10 haplotype that associated with a pro-inflammatory innate immune response, characterised by low IL-10 (p = 0.028) and high TNF-alpha levels (p = 1.39 x 10(-3)), was enriched among Ghanaian elders (p = 2.46 x 10(-6)). Furthermore, in an environment where the source of drinking water (wells/rivers vs. boreholes) influences mortality risks (HR 1.28, 95% CI [1.09-1.50]), we observed that carriers of the pro-inflammatory haplotype have a survival advantage when drinking from wells/rivers but a disadvantage when drinking from boreholes (p(interaction) = 0.013). Resequencing the IL10 gene region did not uncover any additional common variants in the pro-inflammatory haplotype to those SNPs that were initially genotyped. CONCLUSIONS/SIGNIFICANCE:Altogether, these data lend strong arguments for the selection of pro-inflammatory host responses to overcome fatal infection and promote survival in adverse environments
Trends in Mortality from Septicaemia and Pneumonia with Economic Development: An Age-Period-Cohort Analysis
<div><h3>Background</h3><p>Hong Kong population has experienced drastic changes in its economic development in the 1940s. Taking advantage of Hong Kong’s unique demographic and socioeconomic history, characterized by massive, punctuated migration waves from Southern China, and recent, rapid transition from a pre-industrialized society to the first ethnic Chinese community reaching “first world” status over the last 60 years (i.e., in two or three generations), we examined the longitudinal trends in infection related mortality including septicemia compared to trends in non-bacterial pneumonia to generate hypotheses for further testing in other recently transitioned economies and to provide generalized aetiological insights on how economic transition affects infection-related mortality.</p> <h3>Methods</h3><p>We used deaths from septicemia and pneumonia not specified as bacterial, and population figures in Hong Kong from 1976–2005. We fitted age-period-cohort models to decompose septicemia and non-bacterial pneumonia mortality rates into age, period and cohort effects.</p> <h3>Results</h3><p>Septicaemia-related deaths increased exponentially with age, with a downturn by period. The birth cohort curves had downward inflections in both sexes in the 1940s, with a steeper deceleration for women. Non-bacterial pneumonia-related deaths also increased exponentially with age, but the birth cohort patterns showed no downturns for those born in the 1940s.</p> <h3>Conclusion</h3><p>The observed changes appeared to suggest that better early life conditions may enable better development of adaptive immunity, thus enhancing immunity against bacterial infections, with greater benefits for women than men. Given the interaction between the immune system and the gonadotropic axis, these observations are compatible with the hypothesis that upregulation of the gonadotropic axis underlies some of the changes in disease patterns with economic development.</p> </div
Cross-Location Analysis of the Impact of Household Socioeconomic Status on Participation in Urban and Peri-Urban Agriculture in West Africa
This study explores the relation between household socioeconomic status (SES) and participation in urban and periurban agriculture (UPA) in three West African cities. We used a structured questionnaire to survey 700 randomly selected households: 250 in Kano, Nigeria, 250 in Bobo Dioulasso, Burkina Faso, and 200 in Sikasso, Mali. Multiple correspondence analysis was applied on household asset variables to create an index of assets which was used as a proxy for household SES. The results showed no significant differences in households’ rate of participation in UPA across socioeconomic groups. Participation in UPA was rather significantly (P < 0.001) and positively related to household size. Interestingly, the analysis revealed that field crop cultivation and gardening were more common among households in the low and medium SES groups while those in the high SES group were more likely to keep livestock
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Protein Phosphatase-1α Interacts with and Dephosphorylates Polycystin-1
Polycystin signaling is likely to be regulated by phosphorylation. While a number of potential protein kinases and their target phosphorylation sites on polycystin-1 have been identified, the corresponding phosphatases have not been extensively studied. We have now determined that polycystin-1 is a regulatory subunit for protein phosphatase-1α (PP1α). Sequence analysis has revealed the presence of a highly conserved PP1-interaction motif in the cytosolic, C-terminal tail of polycystin-1; and we have shown that transfected PP1α specifically co-immunoprecipitates with a polycystin-1 C-tail construct. To determine whether PP1α dephosphorylates polycystin-1, a PKA-phosphorylated GST-polycystin-1 fusion protein was shown to be dephosphorylated by PP1α but not by PP2B (calcineurin). Mutations within the PP1-binding motif of polycystin-1, including an autosomal dominant polycystic kidney disease (ADPKD)-associated mutation, significantly reduced PP1α-mediated dephosphorylation of polycystin-1. The results suggest that polycystin-1 forms a holoenzyme complex with PP1α via a conserved PP1-binding motif within the polycystin-1 C-tail, and that PKA-phosphorylated polycystin-1 serves as a substrate for the holoenzyme
TRY plant trait database - enhanced coverage and open access
Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta