20 research outputs found
Figuring out what they feel : Exposure to eudaimonic narrative fiction is related to mentalizing ability
Being exposed to narrative fiction may provide us with practice in dealing with social interactions and thereby enhance our ability to engage in mentalizing (understanding other people’s mental states). The current study uses a confirmatory Bayesian approach to assess the relationship between mentalizing and both the self-reported frequency of exposure to narrative fiction across media (books, films, and TV series) and the particular types of fiction that are consumed (eudaimonic vs. hedonic). This study focuses on this relationship in children and adolescents, because they are still developing their social abilities. Exposure to narrative fiction may thus be particularly important in providing input on how to interpret other people’s mental states for this age group. In our study, we find no evidence for a simple relationship between overall frequency of narrative fiction exposure and mentalizing ability in this age group. However, exposure to eudaimonic narrative fiction is consistently positively related to mentalizing and, for some media types and aspects of mentalizing, more strongly so than exposure to hedonic narrative fiction. No evidence was obtained to suggest that there are any differential effects related to the medium of the narrative fiction exposure (written vs. visual).acceptedVersio
On sense and reference: examining the functional neuroanatomy of referential processing
In an event-related fMRI study, we examined the cortical networks involved in establishing. reference during language comprehension. We compared BOLD responses to sentences containing referentially ambiguous pronouns (e.g., "Ronald told Frank that he..."), referentially failing pronouns (e.g., "Rose told Emily that he...") or coherent pronouns. Referential ambiguity selectively recruited media[ prefrontal regions, suggesting that readers engaged in problemsolving to select a unique referent from the discourse model. Referential failure elicited activation increases in brain regions associated with mo rp ho -syntactic processing, and, for those readers who took failing pronouns to refer to unmentioned entities, additional regions associated with elaborative inferencing were observed. The networks activated by these two referential problems did not overlap with the network activated by a standard semantic anomaly. Instead, we observed a double dissociation, in that the systems activated by semantic anomaly are deactivated by referential ambiguity, and vice versa. This inverse coupling may reflect the dynamic recruitment of semantic and episodic processing to resolve semantically or referentially problematic situations. More generally, our findings suggest that neurocognitive accounts of language comprehension need to address not just how we parse a sentence and combine individual word meanings, but also how we determine who's who and what's what during language COmprehension. (c) 2007 Elsevier Inc. All rights reserved
Empathy matters: ERP evidence for inter-individual differences in social language processing
When an adult claims he cannot sleep without his teddy bear, people tend to react surprised. Language interpretation is, thus, influenced by social context, such as who the speaker is. The present study reveals inter-individual differences in brain reactivity to social aspects of language. Whereas women showed brain reactivity when stereotype-based inferences about a speaker conflicted with the content of the message, men did not. This sex difference in social information processing can be explained by a specific cognitive trait, one’s ability to empathize. Individuals who empathize to a greater degree revealed larger N400 effects (as well as a larger increase in γ-band power) to socially relevant information. These results indicate that individuals with high-empathizing skills are able to rapidly integrate information about the speaker with the content of the message, as they make use of voice-based inferences about the speaker to process language in a top-down manner. Alternatively, individuals with lower empathizing skills did not use information about social stereotypes in implicit sentence comprehension, but rather took a more bottom-up approach to the processing of these social pragmatic sentences
Instructional environments for simulations
The use of computer simulations in education and training can have substantial advantages over other approaches. In comparison with alternatives such as textbooks, lectures, and tutorial courseware, a simulation-based approach offers the opportunity to learn in a relatively realistic problem-solving context, to practise task performance without stress, to systematically explore both realistic and hypothetical situations, to change the time-scale of events, and to interact with simplified versions of the process or system being simulated.\ud
However, learners are often unable to cope with the freedom offered by, and the complexity of, a simulation. As a result many of them resort to an unsystematic, unproductive mode of exploration. There is evidence that simulation-based learning can be improved if the learner is supported while working with the simulation. Constructing such an instructional environment around simulations seems to run counter to the freedom the learner is allowed to in ‘stand alone’ simulations. The present article explores instructional measures that allow for an optimal freedom for the learner.\ud
An extensive discussion of learning goals brings two main types of learning goals to the fore: conceptual knowledge and operational knowledge. A third type of learning goal refers to the knowledge acquisition (exploratory learning) process.\ud
Cognitive theory has implications for the design of instructional environments around simulations. Most of these implications are quite general, but they can also be related to the three types of learning goals. For conceptual knowledge the sequence and choice of models and problems is important, as is providing the learner with explanations and minimization of error. For operational knowledge cognitive theory recommends learning to take place in a problem solving context, the explicit tracing of the behaviour of the learner, providing immediate feedback and minimization of working memory load. For knowledge acquisition goals, it is recommended that the tutor takes the role of a model and coach, and that learning takes place together with a companion.\ud
A second source of inspiration for designing instructional environments can be found in Instructional Design Theories. Reviewing these shows that interacting with a simulation can be a part of a more comprehensive instructional strategy, in which for example also prerequisite knowledge is taught. Moreover, information present in a simulation can also be represented in a more structural or static way and these two forms of presentation provoked to perform specific learning processes and learner activities by tutor controlled variations in the simulation, and by tutor initiated prodding techniques. And finally, instructional design theories showed that complex models and procedures can be taught by starting with central and simple elements of these models and procedures and subsequently presenting more complex models and procedures.\ud
Most of the recent simulation-based intelligent tutoring systems involve troubleshooting of complex technical systems. Learners are supposed to acquire knowledge of particular system principles, of troubleshooting procedures, or of both. Commonly encountered instructional features include (a) the sequencing of increasingly complex problems to be solved, (b) the availability of a range of help information on request, (c) the presence of an expert troubleshooting module which can step in to provide criticism on learner performance, hints on the problem nature, or suggestions on how to proceed, (d) the option of having the expert module demonstrate optimal performance afterwards, and (e) the use of different ways of depicting the simulated system.\ud
A selection of findings is summarized by placing them under the four themes we think to be characteristic of learning with computer simulations (see de Jong, this volume)
Tracking affective language comprehension: Simulating and evaluating character affect in morally loaded narratives
Facial electromyography research shows that corrugator supercilii ("frowning muscle") activity tracks the emotional valence of linguistic stimuli. Grounded or embodied accounts of language processing take such activity to reflect the simulation or "re-enactment" of emotion, as part of the retrieval of word meaning (e.g., of "furious") and/or of building a situation model (e.g., for "Mark is furious"). However, the same muscle also expresses our primary emotional evaluation of things we encounter. Language-driven affective simulation can easily be at odds with the reader's affective evaluation of what language describes (e.g., when we like Mark being furious). In a previous experiment ('t Hart et al., 2018) we demonstrated that neither language-driven simulation nor affective evaluation alone seem sufficient to explain the corrugator patterns that emerge during online language comprehension in these complex cases. Those results showed support for a multiple-drivers account of corrugator activity, where both simulation and evaluation processes contribute to the activation patterns observed in the corrugator. The study at hand replicates and extends these findings. With more refined control over when precisely affective information became available in a narrative, we again find results that speak against an interpretation of corrugator activity in terms of simulation or evaluation alone, and as such support the multiple-drivers account. Additional evidence suggests that the simulation driver involved reflects simulation at the level of situation model construction, rather than at the level of retrieving concepts from long-term memory. In all, by giving insights into how language-driven simulation meshes with the reader's evaluative responses during an unfolding narrative, this study contributes to the understanding of affective language comprehension