140 research outputs found

    Direction of the oblique medial malleolar osteotomy for exposure of the talus

    Get PDF
    A medial malleolar osteotomy is often indicated for operative exposure of posteromedial osteochondral defects and fractures of the talus. To obtain a congruent joint surface after refixation, the oblique osteotomy should be directed perpendicularly to the articular surface of the tibia at the intersection between the tibial plafond and medial malleolus. The purpose of this study was to determine this perpendicular direction in relation to the longitudinal tibial axis for use during surgery. Using anteroposterior mortise radiographs and coronal computed tomography (CT) scans of 46 ankles (45 patients) with an osteochondral lesion of the talus, two observers independently measured the intersection angle between the tibial plafond and medial malleolus. The bisector of this angle indicated the osteotomy perpendicular to the tibial articular surface. This osteotomy was measured relative to the longitudinal tibial axis on radiographs. Intraclass correlation coefficients (ICC) were calculated to assess reliability. The mean osteotomy was 57.2 ± 3.2° relative to the tibial plafond on radiographs and 56.5 ± 2.8 on CT scans. This osteotomy corresponded to 30.4 ± 3.7° relative to the longitudinal tibial axis. The intraobserver (ICC, 0.90-0.93) and interobserver (ICC, 0.65-0.91) reliability of these measurements were good to excellent. A medial malleolar osteotomy directed at a mean 30° relative to the tibial axis enters the joint perpendicularly to the tibial cartilage, and will likely result in a congruent joint surface after reductio

    Are genetic risk factors for psychosis also associated with dimension-specific psychotic experiences in adolescence?

    Get PDF
    Psychosis has been hypothesised to be a continuously distributed quantitative phenotype and disorders such as schizophrenia and bipolar disorder represent its extreme manifestations. Evidence suggests that common genetic variants play an important role in liability to both schizophrenia and bipolar disorder. Here we tested the hypothesis that these common variants would also influence psychotic experiences measured dimensionally in adolescents in the general population. Our aim was to test whether schizophrenia and bipolar disorder polygenic risk scores (PRS), as well as specific single nucleotide polymorphisms (SNPs) previously identified as risk variants for schizophrenia, were associated with adolescent dimension-specific psychotic experiences. Self-reported Paranoia, Hallucinations, Cognitive Disorganisation, Grandiosity, Anhedonia, and Parent-rated Negative Symptoms, as measured by the Specific Psychotic Experiences Questionnaire (SPEQ), were assessed in a community sample of 2,152 16-year-olds. Polygenic risk scores were calculated using estimates of the log of odds ratios from the Psychiatric Genomics Consortium GWAS stage-1 mega-analysis of schizophrenia and bipolar disorder. The polygenic risk analyses yielded no significant associations between schizophrenia and bipolar disorder PRS and the SPEQ measures. The analyses on the 28 individual SNPs previously associated with schizophrenia found that two SNPs in TCF4 returned a significant association with the SPEQ Paranoia dimension, rs17512836 (p-value=2.57x10-4) and rs9960767 (p-value=6.23x10-4). Replication in an independent sample of 16-year-olds (N=3,427) assessed using the Psychotic-Like Symptoms Questionnaire (PLIKS-Q), a composite measure of multiple positive psychotic experiences, failed to yield significant results. Future research with PRS derived from larger samples, as well as larger adolescent validation samples, would improve the predictive power to test these hypotheses further. The challenges of relating adult clinical diagnostic constructs such as schizophrenia to adolescent psychotic experiences at a genetic level are discussed

    Variability in Working Memory Performance Explained by Epistasis vs Polygenic Scores in the ZNF804A Pathway

    Get PDF
    Importance: We investigated the variation in neuropsychological function explained by risk alleles at the psychosis susceptibility gene ZNF804A and its interacting partners using single nucleotide polymorphisms (SNPs), polygenic scores, and epistatic analyses. Of particular importance was the relative contribution of the polygenic score vs epistasis in variation explained. Objectives To (1) assess the association between SNPs in ZNF804A and the ZNF804A polygenic score with measures of cognition in cases with psychosis and (2) assess whether epistasis within the ZNF804A pathway could explain additional variation above and beyond that explained by the polygenic score. Design, Setting, and Participants: Patients with psychosis (n = 424) were assessed in areas of cognitive ability impaired in schizophrenia including IQ, memory, attention, and social cognition. We used the Psychiatric GWAS Consortium 1 schizophrenia genome-wide association study to calculate a polygenic score based on identified risk variants within this genetic pathway. Cognitive measures significantly associated with the polygenic score were tested for an epistatic component using a training set (n = 170), which was used to develop linear regression models containing the polygenic score and 2-SNP interactions. The best-fitting models were tested for replication in 2 independent test sets of cases: (1) 170 individuals with schizophrenia or schizoaffective disorder and (2) 84 patients with broad psychosis (including bipolar disorder, major depressive disorder, and other psychosis). Main Outcomes and Measures: Participants completed a neuropsychological assessment battery designed to target the cognitive deficits of schizophrenia including general cognitive function, episodic memory, working memory, attentional control, and social cognition. Results: Higher polygenic scores were associated with poorer performance among patients on IQ, memory, and social cognition, explaining 1% to 3% of variation on these scores (range, P = .01 to .03). Using a narrow psychosis training set and independent test sets of narrow phenotype psychosis (schizophrenia and schizoaffective disorder), broad psychosis, and control participants (n = 89), the addition of 2 interaction terms containing 2 SNPs each increased the R2 for spatial working memory strategy in the independent psychosis test sets from 1.2% using the polygenic score only to 4.8% (P = .11 and .001, respectively) but did not explain additional variation in control participants. Conclusions and Relevance: These data support a role for the ZNF804A pathway in IQ, memory, and social cognition in cases. Furthermore, we showed that epistasis increases the variation explained above the contribution of the polygenic score

    Mitochondrial respiratory states and rate

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to human health expands, the necessity for harmonizing the terminologyconcerning mitochondrial respiratory states and rates has become increasingly apparent. Thechemiosmotic theoryestablishes the mechanism of energy transformationandcoupling in oxidative phosphorylation. Theunifying concept of the protonmotive force providestheframeworkfordeveloping a consistent theoretical foundation ofmitochondrial physiology and bioenergetics.We followguidelines of the International Union of Pure and Applied Chemistry(IUPAC)onterminology inphysical chemistry, extended by considerationsofopen systems and thermodynamicsof irreversible processes.Theconcept-driven constructive terminology incorporates the meaning of each quantity and alignsconcepts and symbols withthe nomenclature of classicalbioenergetics. We endeavour to provide a balanced view ofmitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes.Uniform standards for evaluation of respiratory states and rates will ultimatelycontribute to reproducibility between laboratories and thussupport the development of databases of mitochondrial respiratory function in species, tissues, and cells.Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Influence of Candidate Genes on Attention Problems in Children: A Longitudinal Study

    Get PDF
    Attention problems form one of the core characteristics of Attention-Deficit Hyperactive Disorder (ADHD), a multifactorial neurodevelopmental disorder. From twin research it is clear that genes play a considerable role in the etiology and in the stability of ADHD in childhood. Association studies have focused on genes involved in the dopaminergic and serotoninergic systems, but with inconclusive results. This study investigated the effect of 26 Single Nucleotide Polymorphisms (SNPs) in genes encoding for serotonin receptors 2A (HTR2A), Catechol-O-Methyltransferase (COMT), Tryptophane Hydroxylase type 2 (TPH2), and Brain Derived Neurotrophic Factor (BDNF). Attention problems (AP) were assessed by parental report at ages 3, 7, 10, and 12 years in more than 16,000 twin pairs. There were 1148 genotyped children with AP data. We developed a longitudinal framework to test the genetic association effect. Based on all phenotypic data, a longitudinal model was formulated with one latent factor loading on all AP measures over time. The broad heritability for the AP latent factor was 82%, and the latent factor explained around 55% of the total phenotypic variance. The association of SNPs with AP was then modeled at the level of this factor. None of the SNPs showed a significant association with AP. The lowest p-value was found for the rs6265 SNP in the BDNF gene (p = 0.035). Overall, our results suggest no evidence for a role of these genes in childhood AP
    corecore