5 research outputs found

    IKs inhibitor JNJ303 prolongs the QT interval and perpetuates arrhythmia when combined with enhanced inotropy in the CAVB dog

    Get PDF
    Introduction: Impaired IKs induced by drugs or due to a KCNQ1 mutation, diagnosed as long QT syndrome type 1 (LQT1) prolongs the QT interval and predisposes the heart to Torsade de Pointes (TdP) arrhythmias. The anesthetized chronic AV block (CAVB) dog is inducible for TdP after remodeling and IKr inhibitor dofetilide. We tested the proarrhythmic effect of IKs inhibition in the CAVB dog, and the proarrhythmic role of increased contractility herein. Methods: Dofetilide-inducible animals were included to test the proarrhythmic effect of 1) IKs inhibition by JNJ303 (0.63 mg/kg/10min i.v.; n = 4), 2) IKs inhibition combined with enhanced inotropy (ouabain, 0.045 mg/kg/1min i.v.; n = 6), and 3) the washout period of the anesthetic regime (n = 10). Results: JNJ303 prolonged the QTc interval (from 477 ± 53 ms to 565 ± 14 ms, P < 0.02) resembling standardized dofetilide-induced QTc prolongation. Single ectopic beats (n = 4) and ventricular tachycardia (VT) (n = 3) were present, increasing the arrhythmia score (AS) from 1.0 ± 0 to 7.1 ± 6.5. JNJ303 combined with ouabain increased contractile parameters (LVdP/dtmax from 1725 ± 273 to 4147 ± 611 mmHg/s, P < 0.01). Moreover, TdP arrhythmias were induced in 4/6 dogs and AS increased from 1.0 ± 0 to 20.2 ± 19.0 after JNJ303 and ouabain (P < 0.05). Finally, TdP arrhythmias were induced in 4/10 dogs during the anesthesia washout period and the AS increased from 1.1 ± 0.3 to 9.2 ± 11.2. Conclusion: Mimicking LQT1 using IKs inhibitor JNJ303 prolongs the QTc interval and triggers ectopic beats and non-sustained VT in the CAVB dog. Induction of the more severe arrhythmic events (TdP) demands a combination of IKs inhibition with enhanced inotropy or ending the anesthetic regime

    Cardiac arrhythmias and antiarrhythmic drugs : An autophagic perspective

    No full text
    Degradation of cellular material by lysosomes is known as autophagy, and its main function is to maintain cellular homeostasis for growth, proliferation and survival of the cell. In recent years, research has focused on the characterization of autophagy pathways. Targeting of autophagy mediators has been described predominantly in cancer treatment, but also in neurological and cardiovascular diseases. Although the number of studies is still limited, there are indications that activity of autophagy pathways increases under arrhythmic conditions. Moreover, an increasing number of antiarrhythmic and non-cardiac drugs are found to affect autophagy pathways. We, therefore, suggest that future work should recognize the largely unaddressed effects of antiarrhythmic agents and other classes of drugs on autophagy pathway activation and inhibition

    Remodeling in the AV block dog is essential for tolerating moderate treadmill activity

    No full text
    Background: A preclinical model standardized at different remodeling stages after AV block induction in awake state is suitable for the evaluation of improved cardiac devices. We studied exercise-induced cardiorespiratory parameters at three different timepoints after inducing AV block in dogs. Methods: Mongrel dogs (n = 12) were placed on a treadmill with a 10% incline and performed a moderate exercise protocol (10-minute run at 6 km/h). Dogs ran at sinus rhythm (SR), at two days (AVB2d, initiation of remodeling), three weeks (CAVB3) and six weeks (CAVB6, completed remodeling) after AV block. Results: All dogs completed the exercise protocol at SR, CAVB3 and CAVB6, while 6/12 dogs at AVB2d failed to complete the exercise protocol. The atrial rate was higher at all AV block timepoints (126 ± 20 to 141 ± 19 bpm at rest and 221 ± 10 to 231 ± 13 bpm during exercise) compared to SR (100 ± 29 bpm at rest and 162 ± 28 bpm during exercise, p < 0.05). Upon exercise, stroke volume increased from 66 ± 15 ml at SR, to 96 ± 21 ml at AVB2d (p < 0.05), 91 ± 13 ml at CAVB3 (p < 0.05) and 85 ± 24 ml at CAVB6 but failed to compensate for the AV block-induced bradycardia. Therefore, cardiac output was lower after AV block compared to SR. Exercising dogs at AVB2d showed most arrhythmic events, lowest VO2, and signs of desaturation and acidification in venous blood. Conclusion: Dogs with limited remodeling after AV block have a reduced exercise tolerance, which is reflected in changes in cardiorespiratory parameters

    Flotillins in the intercalated disc are potential modulators of cardiac excitability

    No full text
    Background: The intercalated disc (ID) is important for cardiac remodeling and has become a subject of intensive research efforts. However, as yet the composition of the ID has still not been conclusively resolved and the role of many proteins identified in the ID, like Flotillin-2, is often unknown. The Flotillin proteins are known to be involved in the stabilization of cadherins and desmosomes in the epidermis and upon cancer development. However, their role in the heart has so far not been investigated. Therefore, in this study, we aimed at identifying the role of Flotillin-1 and Flotillin-2 in the cardiac ID. Methods: Location of Flotillins in human and murine cardiac tissue was evaluated by fluorescent immunolabeling and co-immunoprecipitation. In addition, the effect of Flotillin knockout (KO) on proteins of the ID and in electrical excitation and conduction was investigated in cardiac samples of wildtype (WT), Flotillin-1 KO, Flotilin-2 KO and Flotilin-1/2 double KO mice. Consequences of Flotillin knockdown (KD) on cardiac function were studied (patch clamp and Multi Electrode Array (MEA)) in neonatal rat cardiomyocytes (NRCMs) transfected with siRNAs against Flotillin-1 and/or Flotillin-2. Results: First, we confirmed presence in the ID and mutual binding of Flotillin-1 and Flotillin-2 in murine and human cardiac tissue. Flotillin KO mice did not show cardiac fibrosis, nor hypertrophy or changes in expression of the desmosomal ID proteins. However, protein expression of the cardiac sodium channel NaV1.5 was significantly decreased in Flotillin-1 and Flotillin-1/2 KO mice compared to WT mice. In addition, sodium current density showed a significant decrease upon Flotillin-1/2 KD in NRCMs as compared to scrambled siRNA-transfected NRCMs. MEA recordings of Flotillin-2 KD NRCM cultures showed a significantly decreased spike amplitude and a tendency of a reduced spike slope when compared to control and scrambled siRNA-transfected cultures. Conclusions: In this study, we demonstrate the presence of Flotillin-1, in addition to Flotillin-2 in the cardiac ID. Our findings indicate a modulatory role of Flotillins on NaV1.5 expression at the ID, with potential consequences for cardiac excitation

    Plakophilin-2 is required for transcription of genes that control calcium cycling and cardiac rhythm

    No full text
    Plakophilin-2 (PKP2) is a component of the desmosome and known for its role in cell-cell adhesion. Mutations in human PKP2 associate with a life-threatening arrhythmogenic cardiomyopathy, often of right ventricular predominance. Here, we use a range of state-of-the-art methods and a cardiomyocyte-specific, tamoxifen-activated, PKP2 knockout mouse to demonstrate that in addition to its role in cell adhesion, PKP2 is necessary to maintain transcription of genes that control intracellular calcium cycling. Lack of PKP2 reduces expression of Ryr2 (coding for Ryanodine Receptor 2), Ank2 (coding for Ankyrin-B), Cacna1c (coding for CaV1.2) and Trdn (coding for triadin), and protein levels of calsequestrin-2 (Casq2). These factors combined lead to disruption of intracellular calcium homeostasis and isoproterenol-induced arrhythmias that are prevented by flecainide treatment. We propose a previously unrecognized arrhythmogenic mechanism related to PKP2 expression and suggest that mutations in PKP2 in humans may cause life-threatening arrhythmias even in the absence of structural disease
    corecore