9 research outputs found

    Autoimmunity, hypogammaglobulinemia, lymphoproliferation and mycobacterial disease in patients with dominant activating mutations in STAT3

    Get PDF
    The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.</p

    MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice

    No full text
    MicroRNAs (miRNAs) are pivotal for regulation of hematopoiesis but their critical targets remain largely unknown. Here, we show that ectopic expression of miR-17, -20,-93 and -106, all AAAGUGC seed-containing miRNAs, increases proliferation, colony outgrowth and replating capacity of myeloid progenitors and results in enhanced P-ERK levels. We found that these miRNAs are endogenously and abundantly expressed in myeloid progenitors and down-regulated in mature neutrophils. Quantitative proteomics identified sequestosome 1 (SQSTM1), an ubiquitin-binding protein and regulator of autophagy-mediated protein degradation, as a major target for these miRNAs in myeloid progenitors. In addition, we found increased expression of Sqstm1 transcripts during CSF3-induced neutrophil differentiation of 32D-CSF3R cells and an inverse correlation of SQSTM1 protein levels and miR-106 expression in AML samples. ShRNA-mediated silencing of Sqstm1 phenocopied the effects of ectopic miR-17/20/93/106 expression in hematopoietic progenitors in vitro and in mice. Further, SQSTM1 binds to the ligand-activated colony-stimulating factor 3 receptor (CSF3R) mainly in the late endosomal compartment, but not in LC3 positive autophagosomes. SQSTM1 regulates CSF3R stability and ligand-induced mitogen-activated protein kinase signaling. We demonstrate that AAAGUGC seed-containing miRNAs promote cell expansion, replating capacity and signaling in hematopoietic cells by interference with SQSTM1-regulated pathways

    Effects of a Web-Based Tailored Multiple-Lifestyle Intervention for Adults: A Two-Year Randomized Controlled Trial Comparing Sequential and Simultaneous Delivery Modes

    No full text
    BACKGROUND: Web-based computer-tailored interventions for multiple health behaviors can have a significant public health impact. Yet, few randomized controlled trials have tested this assumption. OBJECTIVE: The objective of this paper was to test the effects of a sequential and simultaneous Web-based tailored intervention on multiple lifestyle behaviors. METHODS: A randomized controlled trial was conducted with 3 tailoring conditions (ie, sequential, simultaneous, and control conditions) in the Netherlands in 2009-2012. Follow-up measurements took place after 12 and 24 months. The intervention content was based on the I-Change model. In a health risk appraisal, all respondents (N=5055) received feedback on their lifestyle behaviors that indicated whether they complied with the Dutch guidelines for physical activity, vegetable consumption, fruit consumption, alcohol intake, and smoking. Participants in the sequential (n=1736) and simultaneous (n=1638) conditions received tailored motivational feedback to change unhealthy behaviors one at a time (sequential) or all at the same time (simultaneous). Mixed model analyses were performed as primary analyses; regression analyses were done as sensitivity analyses. An overall risk score was used as outcome measure, then effects on the 5 individual lifestyle behaviors were assessed and a process evaluation was performed regarding exposure to and appreciation of the intervention. RESULTS: Both tailoring strategies were associated with small self-reported behavioral changes. The sequential condition had the most significant effects compared to the control condition after 12 months (T1, effect size=0.28). After 24 months (T2), the simultaneous condition was most effective (effect size=0.18). All 5 individual lifestyle behaviors changed over time, but few effects differed significantly between the conditions. At both follow-ups, the sequential condition had significant changes in smoking abstinence compared to the simultaneous condition (T1 effect size=0.31; T2 effect size=0.41). The sequential condition was more effective in decreasing alcohol consumption than the control condition at 24 months (effect size=0.27). Change was predicted by the amount of exposure to the intervention (total visiting time: beta=–.06; P=.01; total number of visits: beta=–.11; P<.001). Both interventions were appreciated well by respondents without significant differences between conditions. CONCLUSIONS: Although evidence was found for the effectiveness of both programs, no simple conclusive finding could be drawn about which intervention mode was more effective. The best kind of intervention may depend on the behavior that is targeted or on personal preferences and motivation. Further research is needed to identify moderators of intervention effectiveness. The results need to be interpreted in view of the high and selective dropout rates, multiple comparisons, and modest effect sizes. However, a large number of people were reached at low cost and behavioral change was achieved after 2 years. TRIAL REGISTRATION: Nederlands Trial Register: NTR 2168; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2168 (Archived by WebCite at http://www.webcitation.org/6MbUqttYB)

    Congenital Defects of Domestic and Feral Animals

    No full text
    corecore