4,105 research outputs found

    Radiative Decays of the Upsilon(1S) to a Pair of Charged Hadrons

    Full text link
    Using data obtained with the CLEO~III detector, running at the Cornell Electron Storage Ring (CESR), we report on a new study of exclusive radiative Upsilon(1S) decays into the final states gamma pi^+ pi^-, gamma K^+ K^-, and gamma p pbar.. We present branching ratio measurements for the decay modes Upsilon(1S) to gamma f_2(1270), Upsilon(1S) to gamma f_2'(1525), and Upsilon(1S) to gamma K^+K^-; helicity production ratios for f_2(1270) and f_2'(1525); upper limits for the decay Upsilon(1S) to gamma f_J(2200), with f_J(2220) to pi^+ pi^-, K^+ K^-, p pbar; and an upper limit for the decay Upsilon(1S) to gamma X(1860), with X(1860) to gamma p pbar.Comment: 17 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2005/, Submitted to PR

    Search for X(3872) in gamma gamma Fusion and ISR at CLEO

    Full text link
    We report on a search for the recently reported X(3872) state using 15.1 fb^{-1} e+ e- data taken in the \sqrt{s} = 9.46-11.30 GeV region. Separate searches for the production of X(3872) in untagged gamma-gamma fusion and e+ e- annihilation following initial state radiation (ISR) are made by taking advantage of the unique correlation of J/psi -> l+ l- in X(3872) decay to pi+ pi- J/psi. No signals are observed in either case, and 90% confidence upper limits are established as (2J+1)\Gamma_{\gamma\gamma}B(X -> pi+ pi- J/psi) < 12.9 eV and \Gamma_{ee}B(X -> pi+ pi- J/psi) < 8.3 eV.Comment: 8 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2004/, submitted to PR

    Observation of the ^1P_1 State of Charmonium

    Get PDF
    The spin-singlet P-wave state of charmonium, hc(1P1), has been observed in the decay psi(2S) -> pi0 hc followed by hc -> gamma etac. Inclusive and exclusive analyses of the M(hc) spectrum have been performed. Two complementary inclusive analyses select either a range of energies for the photon emitted in hc -> gamma etac or a range of values of M(etac). These analyses, consistent with one another within statistics, yield M(h_c) =[3524.9 +/- 0.7 (stat) +/- 0.4 (sys)]MeV/c^2 and a product of the branching ratios B_psi(psi(2S) -> pi0 hc) x B_h(hc -> gamma etac) = [3.5 +/- 1.0 (stat) +/- 0.7 (sys)] x 10^{-4}. When the etac is reconstructed in seven exclusive decay modes, 17.5 +/- 4.5 hc events are seen with an average mass M(hc) = [3523.6 +/- 0.9 (stat) +/- 0.5 (sys)] MeV/c^2, and B_psi x B_h = [5.3 +/- 1.5 (stat) +/- 1.0 (sys)] x 10^{-4}. Because the inclusive and exclusive data samples are largely independent they are combined to yield an overall mass M(hc) = [3524.4 +/- 0.6 (stat) +/- 0.4 (sys)]MeV/c^2 and product of branching ratios B_psi x B_h = [4.0 +/- 0.8 (stat) +/- 0.7 (sys)] x 10^{-4}. The hc mass implies a P-wave hyperfine splitting Delta M_{HF}(1P) \equiv M(1^3P)-M(1^1P_1) = [1.0 +/- 0.6 (stat) +/- 0.4 (sys)] MeV/c^2.Comment: 38 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2005/, Submitted to PR

    Observation of the Hadronic Transitions Chi_{b 1,2}(2P) -> omega Upsilon(1S)

    Full text link
    The CLEO Collaboration has observed the first hadronic transition among bottomonium (b bbar) states other than the dipion transitions among vector states, Upsilon(nS) -> pi pi Upsilon(mS). In our study of Upsilon(3S) decays, we find a significant signal for Upsilon(3S) -> gamma omega Upsilon(1S) that is consistent with radiative decays Upsilon(3S) -> gamma chi_{b 1,2}(2P), followed by chi_{b 1,2} -> omega Upsilon(1S). The branching ratios we obtain are Br(chi_{b1} -> omega Upsilon(1S) = 1.63 (+0.35 -0.31) (+0.16 -0.15) % and Br(chi_{b2} -> omega Upsilon(1S) = 1.10 (+0.32 -0.28) (+0.11 - 0.10)%, in which the first error is statistical and the second is systematic.Comment: submitted to XXI Intern'l Symp on Lepton and Photon Interact'ns at High Energies, August 2003, Fermila

    Update of the measurement of the cross section for e^+e^- -> psi(3770) -> hadrons

    Full text link
    We have updated our measurement of the cross section for e^+e^- -> psi(3770) -> hadrons, our publication "Measurement of sigma(e^+e^- -> psi(3770) -> hadrons) at E_{c.m.} = 3773 MeV", arXiv:hep-ex/0512038, Phys.Rev.Lett.96, 092002 (2006). Simultaneous with this arXiv update, we have published an erratum in Phys.Rev.Lett.104, 159901 (2010). There, and in this update, we have corrected a mistake in the computation of the error on the difference of the cross sections for e^+e^- -> psi(3770) -> hadrons and e^+e^- -> psi(3770) -> DDbar. We have also used a more recent CLEO measurement of cross section for e^+e^- -> psi(3770) -> DDbar. From this, we obtain an upper limit on the branching fraction for psi(3770) -> non-DDbar of 9% at 90% confidence level.Comment: 3 pages, 0 figures. This is an erratum to Phys.Rev.Lett.96:092002,2006. Added a reference

    The Search for eta(1440) --> K^0_S K^pm \pi^mp in Two-Photon Fusion at CLEO

    Full text link
    We analyze 13.8 \rm fb^{-1} of the integrated e^+e^- luminosity collected at 10.6 GeV center-of-mass energy with the CLEO II and CLEO II.V detectors to study exclusive two-photon production of hadrons with masses below 1.7{\rm \ GeV/c^2} decaying into the K^0_S K^\pm \pi^\mp final state. We observe two statistically significant enhancements in the \eta(1440) mass region. These enhancements have large transverse momentum which rules them out as being due to pseudoscalar resonances but is consistent with the production of axial-vector mesons. We use tagged two-photon events to study the properties of the observed enhancements and associate them with the production of f_1(1285) and f_1(1420). Our non-observation of \eta(1440) is inconsistent by more than two standard deviations with the first observation of this resonance in two-photon collisions by the L3 experiment. We present our estimates for 90% confidence level upper limits on the products of two-photon partial widths of pseudoscalar hadrons and their branching fractions into K^0_S(\pi^+\pi^-)K^\pm\pi^\mp.Comment: 24 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2004/, submitted to PR

    Evidence for B^(*)_s bar{B}^(*)_s Production at the Upsilon(5S)

    Full text link
    Using data collected by the CLEO III detector at CESR, we started a series of investigations on the Upsilon(5S) resonance decay properties. The data sample used for this analysis consists of 0.42 fb-1 of data taken on the Upsilon(5S) resonance, 6.34 fb-1 of data collected on the Upsilon(4S) and 2.32 fb-1 of data taken in the continuum below the Upsilon(4S). B_s mesons are expected to decay predominantly into D_s meson, while the lighter B mesons decay into D_s only about 10% of the time. We exploit this difference to make a preliminary model dependent estimate of the ratio of B_s(*) anti-B_s(*) to the total b anti-b quark pair production at the Upsilon(5S) energy to be (21 +- 3 +- 9)%.Comment: 17 pages postscript,also available through http://www.lns.cornell.edu/public/CONF/2004/, Presented at ICHEP Aug 16-22,2004, Beijing, Chin

    Measurement of \cal{B}(D^+ --> mu^+ nu) and the Pseudoscalar Decay Constant fD+f_{D^+}

    Full text link
    In 60 pb-1 of data taken on the psi(3770) resonance with the CLEO-c detector, we find 8 D+ to mu+ nu event candidates that are mostly signal, containing only 1 estimated background. Using this statistically compelling sample, we measure preliminary values of B(D+ to mu+ nu) = (3.5 +- 1.4 +- 0.6)*10^{-4}, and determine f_{D+} =(201+- 41+- 17) MeV.Comment: 17 pages postscript, also available through http://www.lns.cornell.edu/public/CONF/2004/, Presented at ICHEP Aug 16-22,2004, Beijing, Chin

    Branching Fraction Measurements of psi(2S) Decay to Baryon-Antibaryon Final States

    Full text link
    Using 3.08 million psi(2S) decays observed in e^+e^- collisions by the CLEO detector, we present the results of a study of the psi(2S) decaying into baryon-antibaryon final states. We report the most precise measurements of the following eight modes: proton-antiproton, lambda-antilambda, Xi^- antiXi^-, Xi^0-antiXi^0 (first observation), Sigma+-antiSigma^+ (first observation), and Sigma^0-antiSigma^0, and place upper limits for the modes, Xi^0*-antiXi^0* and Omega^- antiOmega^-.Comment: 8 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2005/, submitted to PR
    • …
    corecore