1 research outputs found
Transform-limited photons from a coherent tin-vacancy spin in diamond
Solid-state quantum emitters that couple coherent optical transitions to
long-lived spin qubits are essential for quantum networks. Here we report on
the spin and optical properties of individual tin-vacancy (SnV) centers in
diamond nanostructures. Through cryogenic magneto-optical and spin
spectroscopy, we verify the inversion-symmetric electronic structure of the
SnV, identify spin-conserving and spin-flipping transitions, characterize
transition linewidths, measure electron spin lifetimes and evaluate the spin
dephasing time. We find that the optical transitions are consistent with the
radiative lifetime limit even in nanofabricated structures. The spin lifetime
is phononlimited with an exponential temperature scaling leading to
10 ms, and the coherence time, reaches the nuclear spin-bath limit upon
cooling to 2.9 K. These spin properties exceed those of other
inversion-symmetric color centers for which similar values require millikelvin
temperatures. With a combination of coherent optical transitions and long spin
coherence without dilution refrigeration, the SnV is a promising candidate for
feasable and scalable quantum networking applications