369 research outputs found

    Magnetically Confined Wind Shocks in X-rays - a Review

    Full text link
    A subset (~ 10%) of massive stars present strong, globally ordered (mostly dipolar) magnetic fields. The trapping and channeling of their stellar winds in closed magnetic loops leads to magnetically confined wind shocks (MCWS), with pre-shock flow speeds that are some fraction of the wind terminal speed. These shocks generate hot plasma, a source of X-rays. In the last decade, several developments took place, notably the determination of the hot plasma properties for a large sample of objects using XMM-Newton and Chandra, as well as fully self-consistent MHD modelling and the identification of shock retreat effects in weak winds. Despite a few exceptions, the combination of magnetic confinement, shock retreat and rotation effects seems to be able to account for X-ray emission in massive OB stars. Here we review these new observational and theoretical aspects of this X-ray emission and envisage some perspectives for the next generation of X-ray observatories.Comment: accepted for publication by Advances in Space Research (special issue "X-ray emission from hot stars and their winds"

    The Effect of Magnetic Field Tilt and Divergence on the Mass Flux and Flow Speed in a Line-Driven Stellar Wind

    Full text link
    We carry out an extended analytic study of how the tilt and faster-than-radial expansion from a magnetic field affect the mass flux and flow speed of a line-driven stellar wind. A key motivation is to reconcile results of numerical MHD simulations with previous analyses that had predicted non-spherical expansion would lead to a strong speed enhancement. By including finite-disk correction effects, a dynamically more consistent form for the non-spherical expansion, and a moderate value of the line-driving power index α\alpha, we infer more modest speed enhancements that are in good quantitative agreement with MHD simulations, and also are more consistent with observational results. Our analysis also explains simulation results that show the latitudinal variation of the surface mass flux scales with the square of the cosine of the local tilt angle between the magnetic field and the radial direction. Finally, we present a perturbation analysis of the effects of a finite gas pressure on the wind mass loss rate and flow speed in both spherical and magnetic wind models, showing that these scale with the ratio of the sound speed to surface escape speed, a/vesca/v_{esc}, and are typically 10-20% compared to an idealized, zero-gas-pressure model.Comment: Accepted for publication in ApJ, for the full version of the paper go to: http://www.bartol.udel.edu/~owocki/preprints/btiltdiv-mdotvinf.pd

    Magnetically confined wind shock

    Full text link
    Many stars across all classes possess strong enough magnetic fields to influence dynamical flow of material off the stellar surface. For the case of massive stars (O and B types), about 10\% of them harbour strong, globally ordered (mostly dipolar) magnetic fields. The trapping and channeling of their stellar winds in closed magnetic loops leads to {\it magnetically confined wind shocks} (MCWS), with pre-shock flow speeds that are some fraction of the wind terminal speed that can be a few thousand km s−1^{-1}. These shocks generate hot plasma, a source of X-rays. In the last decade, several developments took place, notably the determination of the hot plasma properties for a large sample of objects using \xmm\ and \ch, as well as fully self-consistent MHD modelling and the identification of shock retreat effects in weak winds. In addition, these objects are often sources of Hα\alpha emission which is controlled by either sufficiently high mass loss rate or centrifugal breakout. Here we review the theoretical aspects of such magnetic massive star wind dynamics.Comment: Accepted for publication invited chapter of the Handbook of X-ray and Gamma-ray Astrophysics published by Nature Springer. arXiv admin note: text overlap with arXiv:1509.06482, arXiv:1605.0497

    A Rigid-Field Hydrodynamics approach to modeling the magnetospheres of massive stars

    Full text link
    We introduce a new Rigid-Field Hydrodynamics approach to modeling the magnetospheres of massive stars in the limit of very-strong magnetic fields. Treating the field lines as effectively rigid, we develop hydrodynamical equations describing the 1-dimensional flow along each, subject to pressure, radiative, gravitational, and centrifugal forces. We solve these equations numerically for a large ensemble of field lines, to build up a 3-dimensional time-dependent simulation of a model star with parameters similar to the archetypal Bp star sigma Ori E. Since the flow along each field line can be solved for independently of other field lines, the computational cost of this approach is a fraction of an equivalent magnetohydrodynamical treatment. The simulations confirm many of the predictions of previous analytical and numerical studies. Collisions between wind streams from opposing magnetic hemispheres lead to strong shock heating. The post-shock plasma cools initially via X-ray emission, and eventually accumulates into a warped, rigidly rotating disk defined by the locus of minima of the effective (gravitational plus centrifugal) potential. But a number of novel results also emerge. For field lines extending far from the star, the rapid area divergence enhances the radiative acceleration of the wind, resulting in high shock velocities (up to ~3,000 km/s) and hard X-rays. Moreover, the release of centrifugal potential energy continues to heat the wind plasma after the shocks, up to temperatures around twice those achieved at the shocks themselves. Finally, in some circumstances the cool plasma in the accumulating disk can oscillate about its equilibrium position, possibly due to radiative cooling instabilities in the adjacent post-shock regions.Comment: 21 pages, 12 figures w/ color, accepted by MNRA
    • 

    corecore