221 research outputs found
Lattice deformation in an axially strained BiSrCaCuO/Ag tape conductor investigated by X-ray diffraction
The lattice deformation of a Bi-2212/Ag tape conductor is investigated as a function of an externally applied strain at 300 K. This macroscopic strain is applied in the same direction (ÂżaxialÂż) as where the current is normally passed through the conductor. A small but significant shift is observed in the position of the diffraction peak. In a limited strain regime this shift is proportional to the applied strain. The deformation of the c-axis that corresponds to the observed peak shift can be described well with an elastic grain deformation. For tensile axial strains above 0.2% and below Âż0.1% strain, the c-axis deformation is limited to an almost constant value. These two limits in the elastic behaviour divide the axial strain range into three regimes. A good correlation with the axial strain dependence of the critical current at 77 K, is obtained when the thermal contraction is taken into account. In the central strain range, where an elastic lattice deformation is observed, the critical current remains almost constant. Any tensile or compressive deformation that exceeds the elastic limits causes a more severe and irreversible reduction of the critical current
Analysis of AC loss in superconducting power devices calculated from short sample data
A method to calculate the AC loss of superconducting power devices from the measured AC loss of a short sample is developed. In coils and cables the magnetic field varies spatially. The position dependent field vector is calculated assuming a homogeneous current distribution. From this field profile and the transport current, the local AC loss is calculated. Integration over the conductor length yields the AC loss of the device. The total AC loss of the device is split up in different components. Magnetization loss, transport current loss and the loss due to the combined action of field and current all contribute to the AC loss of the device. Because ways to reduce the AC loss depend on the loss mechanism it is important to know the relative contribution of each component. The method is demonstrated on a prototype transformer coil wound from Bi/sub 2/Sr/sub 2/Ca/sub 2/Cu/sub 3/O/sub x//Ag superconducting tape. Differences between the model assumptions and devices are pointed out. Nevertheless, within the uncertainty margins the calculated AC loss is in agreement with the measured loss of the coil
Experimental Verification of the Temperature and Strain Dependence of the Critical Properties in Nb3Sn Wires
The critical current density in Nb3Sn conductors is described with an improved scaling formula for the temperature, magnetic field and strain dependence. In an earlier study, it is concluded that the largest uncertainties in this description arise from the temperature dependence that is described with various slightly different empirical relations. For the optimization of the numerical codes, used to predict the stability of large magnet systems, a more accurate description is required. Therefore, two different bronze processed conductors for the ITER CS model coil are analyzed in detail. The critical current is measured at temperatures from 4.2 K up to the critical temperature, in magnetic fields from 1 T to 13 T and with an applied axial strain from -0.6% to +0.4%. The axial strain is applied by a U-shaped bending spring and a comparison is made between brass and Ti-6Al-4V, as substrate materia
An engineering formula to describe the AC loss of BSCCO/Ag tape
An engineering function to describe the AC loss of BSCCO/Ag tape conductors is developed. For a wide range of transport currents and magnetic fields (with different orientation) the loss is described with an uncertainty of 10%. The equation is based on the analytical expressions available, BSCCO/Ag tapes used in power applications at liquid nitrogen temperature are fed with an AC transport current and exposed to an AC magnetic field. The magnetic field in a device has different orientations with respect to the position of the conductor in the device. In this contribution, AC loss measurements for simultaneously applied magnetic field (with different orientation) and transport current are presented for a high quality tape conductor that is used in a transformer coil. The results are separated into a magnetic and a transport current loss componen
Field dependence of the critical current and its relation to the anisotropy of BSCCO conductors and coils
The design of HTS magnets is often based on the properties of a number of short samples that are presumed to be representative of the conductor to be used. Variability in conductor properties and inhomogeneity in the magnetic field distribution within the magnets, coupled with conductor anisotropy, provide a significant challenge to accurately predict the field dependence of the magnet critical current. This work is based on measured superconducting properties of Bi-2212 and Bi-2223 conductors at 4.2 K in parallel and perpendicular magnetic fields up to 33 T. Properties of double pancake units and stacks, from the same or similar conductor batches, are presented, based on measurements at self-field and in applied co-axial background magnetic fields up to 19 T. Modeling of this data is based on short sample properties in perpendicular field; the average grain misalignment is used as the parameter to quantify the anisotropy. Correlations and discrepancies between the measured data and models based on short sample data are discussed for Bi-2212 and Bi-2223 conductors
Characterisation of a high-Tc coil using short sample data
Characteristics of a circular superconducting coil made with BSCCO-2223/Ag tape depend on the amplitude and direction of the magnetic field in the windings. The effect can be estimated by studying a short sample of the same tape. However, the loss voltage-current and the frequency characteristics of a coil deviate considerably from those that are measured on a short sample. In order to estimate the deviation, the authors compared measured characteristics of a few small coils employing up to ~10 m of tape with those calculated from the short samples data. The comparison includes several arrangements of coils and field shaping elements around the coil edges and is performed in the frequency and temperature range typical for power applications (1-100 Hz and 64-78 K respectively). The results are applied to the design of a 100 kVA-50 Hz resonator coil with a high quality facto
Magnetisation and transport current loss of a BSCCO/Ag tape in an external AC magnetic field carrying an AC transport current
In practical applications, BSCCO/Ag tapes are exposed to external AC magnetic field and fed with an AC transport current. The total AC loss can be separated in two contributions: first, the transport current loss influenced by an external AC magnetic field, and second, the magnetisation loss that depends on the transport current running through the conductor. In this paper the total AC loss is considered and the role of the electric and magnetic components is compared. This comparison is made with an available analytical model for the AC loss in an infinite slab and verified experimentally for a BSCCO/Ag tape conductor. For small transport currents the magnetisation loss dominates the total loss. When the current increases, a field dependent crossover occurs, after which the transport current loss also plays a role. Qualitatively the measurements can be described well in terms of the critical state model. For magnetic field parallel to the wide side of the conductor the CSM for an infinite slab describes the measurements also quantitativel
Development of a superconducting protection switch for the HERA P-ring: design study and demonstration models
The electrical circuit of the HERA (Hadron Electron Ring Accelerator) proton ring (p-ring) is divided in octants so that in the case of a quench, the current has to be commutated to dumping resistors. The authors describe the application of superconducting switches which would enable the main circuit to remain at 4 K during a quench while the current is forced to flow through instantaneously loaded leads and dumping resistors. The main specifications of the required switches are: current of 6.5 kA, minimum off-resistance 12 Omega , energy absorbed 1 MJ, and self protecting. The various design and feasibility aspects of superconducting switches for this application are discussed. The requirement of being passively protected against a self-quench is considered the most critical design problem. It is still uncertain whether it remains necessary to apply an active protection scheme to enable safe operation of the switch
A loss measurement system in a test facility for high-current superconducting cables and wires
The AC loss measurement system in the Twente test facility is operational. Preliminary results of the first loss measurements on a vacuum-welded conductor are presented. The Twente test facility is a high-current system in which superconductors can be tested up to 7 T and 25 kA. The loss measurements were done on a monolith conductor designed for TORE SUPRA, manufactured by Vacuumschmelze
The critical current in a NbTi tape measured in different directions of magnetic field and the current reduction due to the self field
With reference to the application of NbTi tape in a superconducting thermal switch, the critical current of a 20-Âżm-thick NbTi tape was measured in several directions of the magnetic field. The critical current was found to behave strongly anisotropically, due to the deformation of the NbTi. The tape is extrasensitive to the component of the magnetic field perpendicular to the surface. Without an external field this component of the self-field reduces the critical current far below its intrinsic value. A one-dimensional model can describe the reduction of critical current due to the self-field in a thin tap
- âŠ