273 research outputs found

    Oxygen transport through La@1-x]Sr@x]FeO@3-gamma] membranes. I. Permeation in air/He gradients

    Get PDF
    Oxygen permeation measurements in air/He gradients were performed on dense La1 ¿ xSrxFeO3 ¿ ¿ membranes in the composition range x = 0.1¿0.4 and temperature range 1123¿1323 K. Pretreatment of the lower oxygen partial pressure side of the membranes in a CO-containing atmosphere for several hours at 1273 K led to higher oxygen fluxes, which were in the range of 0.1¿4.5 mmol m¿2 s¿1. After treatment, the observed oxygen fluxes could be described in terms of bulk diffusion-limited permeation behaviour. Experimental evidence for a bulk-diffusion controlled flux was found from thickness dependence measurements on membranes with thicknesses between 0.5 mm and 2.0 mm. Model calculations, based on Wagner theory in conjunction with data of oxygen nonstoichiometry and vacancy diffusion coefficients from literature, were performed. The experimental flux values deviated from the model calculations with factors up to 2.5. Adjustment of the value of the vacancy diffusion coefficient led to good agreement between the experimental data and the model calculations. The calculated vacancy diffusion coefficients Dv0 were virtually independent of composition and were found to be in the range 5.3¿9.3 × 10¿6 cm2 s¿1

    The swelling transition of lepidocrocite-type protonated layered titanates into anatase under hydrothermal treatment

    Get PDF
    The common facets of anatase crystals are the (001) and (101) planes. However, the phase transformation from lepidocrocite-type titanate into anatase by hydrothermal processing yields an anatase microstructure with high concentration of exposed (010) planes. The phase transformation of a lepidocrocite-type protonated layered titanate (HTO) into anatase was studied using XRD, TEM, FTIR, and measurement of pH and zeta potential. It was found that HTO is proton-deficient. The phase transformation process begins after uptake of a sufficient number of protons into the lepidocrocite-type structure. With the uptake of protons new hydroxyl groups form on the internal surfaces of the layered titanate and result in a bilayer state of HTO. The phase transformation reaction is a topotactic dehydration reaction in which anatase forms and water is expelled by syneresis

    Phase distribution regulation of formamidinium-based quasi-2D perovskites through solution engineering

    Get PDF
    Quasi-2D perovskites have attracted attention as potential solar energy absorber materials due to their balanced efficiency and stability and their unique quantum-well structures. In order to facilitate directional excitons and charge carrier transport and preferential energy transfer landscape in photovoltaic thin films, the phase distribution formed by different types of microstructural domains should be regulated. In this work, the Dion-Jacobson-type spacer 1,4-phenylenedimethanammonium (PDMA) was used, and different strategies were pursued to control the phase distribution in formamidinium-based (FA) quasi-2D perovskites based on the composition of (PDMA)FA4Pb5I16. In general, doping with FACl modulated the crystallization kinetics, forming 2D low-n crystals on the top surface or a reversed-gradient phase distribution, depending on whether excess or substitutional doping was employed. Alternatively, mixing with a Ruddlesden-Popper spacer helped bridging to adjacent octahedra in pure PDMA-based perovskites and improved crystallization, while regulating the quantum-well structures to give a normal-gradient phase distribution, where 2D domains resided on the bottom side. By combining FACl doping and spacer mixing, the film showed both a reversed-gradient phase distribution and larger vertically aligned grains. This work contributes to the knowledge of how to manipulate and regulate the phase distribution in FA-based quasi-2D perovskites and further paves the way for fabricating corresponding devices with high efficiency and stability.</p

    Electrodeposition in capillaries: bottom-up micro- and nanopatterning of functional materials on conductive substrates

    Get PDF
    A cost-effective and versatile methodology for bottom-up patterned growth of inorganic and metallic materials on the micro- and nanoscale is presented. Pulsed electrodeposition was employed to deposit arbitrary patterns of Ni, ZnO, and FeO(OH) of high quality, with lateral feature sizes down to 200–290 nm. The pattern was defined by an oxygen plasma-treated patterned PDMS mold in conformal contact with a conducting substrate and immersed in an electrolyte solution, so that the solid phases were deposited from the solution in the channels of the patterned mold. It is important that the distance between the entrance of the channels, and the location where deposition is needed, is kept limited. The as-formed patterns were characterized by high resolution scanning electron microscope, energy-dispersive X-ray analysis, atomic force microscopy, and X-ray diffraction

    Tailor-Made Nanostructured Ion Selective MCM-48 Membranes

    Get PDF
    Mesoporous templated MCM-48 silica was prepared using a C16 surfactant as template. The MCM-48 powders and thin films were characterized by different techniques. Two types of porous supports were used, namely macroporous ¿-alumina and silicon microsieves. The supported MCM-48 layers were applied as liquid permeable membranes in pressure-driven nanofiltration and electric field-mediated ion transport experiments

    Templated electrodeposition of Ag7NO11 nanowires with very high oxidation states of silver

    Get PDF
    The templated electrodeposition of 200 nm diameter nanowires of the argentic oxynitrate Ag(Ag3O4)2NO3 phase is reported. Their high surface-to-volume ratio and the high average oxidation state of Ag make these wires promising candidates for nanoscale redox processes in which both a high volumetric charge density and a high discharge rate are required. The antibiotic activity of these nanowires was demonstrated by inhibiting the growth of Bacillus cereus bacteria

    Patterning functional materials using channel diffused plasma-etched self-assembled monolayer templates

    Get PDF
    A simple and cost-effective methodology for large-area micrometer-scale patterning of a wide range of metallic and oxidic functional materials is presented. Self-assembled monolayers (SAM) of alkyl thiols on Au were micropatterned by channel-diffused oxygen plasma etching, a method in which selected areas of SAM were protected from plasma oxidation via a soft lithographic stamp. The patterned SAMs were used as templates for site-selective electrodeposition, electroless deposition and solution-phase deposition of functional materials such as ZnO, Ni, Ag thin films, and ZnO nanowires. The patterned SAMs and functional materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and tunneling AFM (TUNA).\u
    corecore