3 research outputs found

    Zeolite-filled silicone rubber membranes : Part 1. Membrane preparation and pervaporation results

    Get PDF
    Amongst the alternative fuels obtained from renewable resources alcohol from fermentation may become one of the most important. The combination of fermentation with pervaporation in a membrane bioreactor offers the advantage of continuous processing. In this membrane bioreactor alcohol-selective membranes are needed. The performance of the membranes available at present is poor. Much research is being carried out on silicone rubber but the selectivity of this material for alcohol is too low. Addition to the membrane of a sorptive filler with a high selectivity towards alcohol appears to improve both selectivity and flux. Silicalite, a novel type of hydrophobic zeolite, has been used for that purpose. Results presented in this paper indicate that transport through the zeolite pores contributes to a major extent to the total transport through the membrane

    Zeolite-filled silicone rubber membranes. Experimental determination of concentration profiles

    Get PDF
    Permeant concentrations in silicalite-filled silicone rubber membranes during pervaporation of propanol/water mixtures were measured using multi-layered membranes. Experimentally determined concentration profiles show that the propanol concentration in the silicalite-filled membrane increases with increasing silicalite content. The water concentration in the membrane is low and no water is present in the silicalite particles during pervaporation.\ud The concentration profiles measured here support the observations from the resistance model that the diffusion through the membrane determines the transport rate, i.e., adsorption is a fast process

    Exclusion and Tortuosity Effects for Alcohol/Water Separation by Zeolite-Filled PDMS Membranes

    No full text
    A resistance model has been developed to describe the increased pervaporation flux and selectivity for the separation of ethanol/water mixtures with silicalite-filled silicone rubber (SR) membranes as compared to unfilled SR membranes. The model interprets the increased component flux for ethanol in terms of an increasing ethanol permeability of the membrane. Membrane permeability is given as a function of rubber and silicalite permeabilities and of the silicalite content of the membrane. It is shown that silicalite permeability varies with the type of alcohol and the alcohol concentration in the feed mixture. In the series methanol, ethanol, propanol, and butanol, the alcohol permeability of silicalite varies with the length of the alcohol molecule, the lowest permeability being found for butanol. In the presence of propanol and butanol, the silicalite particles are impermeable to water and obstruct water transport through the membrane
    corecore