6 research outputs found

    First operation and drift field performance of a large area double phase LAr Electron Multiplier Time Projection Chamber with an immersed Greinacher high-voltage multiplier

    Full text link
    We have operated a liquid-argon large-electron-multiplier time-projection chamber (LAr LEM-TPC) with a large active area of 76 ×\times 40 cm2^2 and a drift length of 60 cm. This setup represents the largest chamber ever achieved with this novel detector concept. The chamber is equipped with an immersed built-in cryogenic Greinacher multi-stage high-voltage (HV) multiplier, which, when subjected to an external AC HV of \sim1 kVpp_{\mathrm{pp}}, statically charges up to a voltage a factor of \sim30 higher inside the LAr vessel, creating a uniform drift field of \sim0.5 kV/cm over the full drift length. This large LAr LEM-TPC was brought into successful operation in the double-phase (liquid-vapor) operation mode and tested during a period of \sim1 month, recording impressive three-dimensional images of very high-quality from cosmic particles traversing or interacting in the sensitive volume. The double phase readout and HV systems achieved stable operation in cryogenic conditions demonstrating their good characteristics, which particularly suit applications for next-generation giant-scale LAr-TPCs.Comment: 26 pages, 19 figure

    Study of infrared scintillations in gaseous and liquid argon - Part II: light yield and possible applications

    Full text link
    We present here a comprehensive study of the light yield of primary and secondary scintillations produced in gaseous and liquid Ar in the near infrared (NIR) and visible region, at cryogenic temperatures. The measurements were performed using Geiger-mode avalanche photodiodes (GAPDs) and pulsed X-ray irradiation. The primary scintillation yield of the fast emission component in gaseous Ar was found to be independent of temperature in the range of 87-160 K; it amounted to 17000+/-3000 photon/MeV in the NIR in the range of 690-1000 nm. In liquid Ar at 87 K, the primary scintillation yield of the fast component was considerably reduced, amounting to 510+/-90 photon/MeV, in the range of 400-1000 nm. Proportional NIR scintillations (electroluminescence) in gaseous Ar were also observed; their amplification parameter at 160 K was measured to be 13 photons per drifting electron per kV. No proportional scintillations were observed in liquid Ar up to the electric fields of 30 kV/cm. The applications of NIR scintillations in dark matter search and coherent neutrino-nucleus scattering experiments and in ion beam radiotherapy are considered.Comment: 20 pages, 11 figures. Submitted to JINS
    corecore