4,875 research outputs found

    Optimizing the geometrical accuracy of curvilinear meshes

    Full text link
    This paper presents a method to generate valid high order meshes with optimized geometrical accuracy. The high order meshing procedure starts with a linear mesh, that is subsequently curved without taking care of the validity of the high order elements. An optimization procedure is then used to both untangle invalid elements and optimize the geometrical accuracy of the mesh. Standard measures of the distance between curves are considered to evaluate the geometrical accuracy in planar two-dimensional meshes, but they prove computationally too costly for optimization purposes. A fast estimate of the geometrical accuracy, based on Taylor expansions of the curves, is introduced. An unconstrained optimization procedure based on this estimate is shown to yield significant improvements in the geometrical accuracy of high order meshes, as measured by the standard Haudorff distance between the geometrical model and the mesh. Several examples illustrate the beneficial impact of this method on CFD solutions, with a particular role of the enhanced mesh boundary smoothness.Comment: Submitted to JC

    There are 174 Subdivisions of the Hexahedron into Tetrahedra

    Full text link
    This article answers an important theoretical question: How many different subdivisions of the hexahedron into tetrahedra are there? It is well known that the cube has five subdivisions into 6 tetrahedra and one subdivision into 5 tetrahedra. However, all hexahedra are not cubes and moving the vertex positions increases the number of subdivisions. Recent hexahedral dominant meshing methods try to take these configurations into account for combining tetrahedra into hexahedra, but fail to enumerate them all: they use only a set of 10 subdivisions among the 174 we found in this article. The enumeration of these 174 subdivisions of the hexahedron into tetrahedra is our combinatorial result. Each of the 174 subdivisions has between 5 and 15 tetrahedra and is actually a class of 2 to 48 equivalent instances which are identical up to vertex relabeling. We further show that exactly 171 of these subdivisions have a geometrical realization, i.e. there exist coordinates of the eight hexahedron vertices in a three-dimensional space such that the geometrical tetrahedral mesh is valid. We exhibit the tetrahedral meshes for these configurations and show in particular subdivisions of hexahedra with 15 tetrahedra that have a strictly positive Jacobian

    Finding Hexahedrizations for Small Quadrangulations of the Sphere

    Full text link
    This paper tackles the challenging problem of constrained hexahedral meshing. An algorithm is introduced to build combinatorial hexahedral meshes whose boundary facets exactly match a given quadrangulation of the topological sphere. This algorithm is the first practical solution to the problem. It is able to compute small hexahedral meshes of quadrangulations for which the previously known best solutions could only be built by hand or contained thousands of hexahedra. These challenging quadrangulations include the boundaries of transition templates that are critical for the success of general hexahedral meshing algorithms. The algorithm proposed in this paper is dedicated to building combinatorial hexahedral meshes of small quadrangulations and ignores the geometrical problem. The key idea of the method is to exploit the equivalence between quad flips in the boundary and the insertion of hexahedra glued to this boundary. The tree of all sequences of flipping operations is explored, searching for a path that transforms the input quadrangulation Q into a new quadrangulation for which a hexahedral mesh is known. When a small hexahedral mesh exists, a sequence transforming Q into the boundary of a cube is found; otherwise, a set of pre-computed hexahedral meshes is used. A novel approach to deal with the large number of problem symmetries is proposed. Combined with an efficient backtracking search, it allows small shellable hexahedral meshes to be found for all even quadrangulations with up to 20 quadrangles. All 54,943 such quadrangulations were meshed using no more than 72 hexahedra. This algorithm is also used to find a construction to fill arbitrary domains, thereby proving that any ball-shaped domain bounded by n quadrangles can be meshed with no more than 78 n hexahedra. This very significantly lowers the previous upper bound of 5396 n.Comment: Accepted for SIGGRAPH 201

    One machine, one minute, three billion tetrahedra

    Full text link
    This paper presents a new scalable parallelization scheme to generate the 3D Delaunay triangulation of a given set of points. Our first contribution is an efficient serial implementation of the incremental Delaunay insertion algorithm. A simple dedicated data structure, an efficient sorting of the points and the optimization of the insertion algorithm have permitted to accelerate reference implementations by a factor three. Our second contribution is a multi-threaded version of the Delaunay kernel that is able to concurrently insert vertices. Moore curve coordinates are used to partition the point set, avoiding heavy synchronization overheads. Conflicts are managed by modifying the partitions with a simple rescaling of the space-filling curve. The performances of our implementation have been measured on three different processors, an Intel core-i7, an Intel Xeon Phi and an AMD EPYC, on which we have been able to compute 3 billion tetrahedra in 53 seconds. This corresponds to a generation rate of over 55 million tetrahedra per second. We finally show how this very efficient parallel Delaunay triangulation can be integrated in a Delaunay refinement mesh generator which takes as input the triangulated surface boundary of the volume to mesh

    Linear and planar molecules formed by coupled P donors in silicon

    Full text link
    Using the effective mass theory and the multi-valley envelope function representation, we have developed a theoretical framework for computing the single-electron electronic structure of several phosphorus donors interacting in an arbitrary geometrical configuration in silicon taking into account the valley-orbit coupling. The methodology is applied to three coupled phosphorus donors, arranged in a linear chain and in a triangle, and to six donors arranged in a regular hexagon. The results of the simulations evidence that the valley composition of the single-electron states strongly depends on the geometry of the dopant molecule and its orientation relative to the crystallographic axes of silicon. The electron binding energy of the triatomic linear molecules is larger than that of the diatomic molecule oriented along the same crystallographic axis, but the energy gap between the ground state and the first excited state is not significantly different for internuclear distances from 1.5 to 6.6 nm. Three donor atoms arranged in a triangle geometry have larger binding energies than a triatomic linear chain of dopants with the same internuclear distances. The planar donor molecules are characterized by a strong polarization in favor of the valleys oriented perpendicular to the plane of the molecule. The polarization increases with number of atoms forming the planar molecule

    Identifying combinations of tetrahedra into hexahedra: a vertex based strategy

    Full text link
    Indirect hex-dominant meshing methods rely on the detection of adjacent tetrahedra an algorithm that performs this identification and builds the set of all possible combinations of tetrahedral elements of an input mesh T into hexahedra, prisms, or pyramids. All identified cells are valid for engineering analysis. First, all combinations of eight/six/five vertices whose connectivity in T matches the connectivity of a hexahedron/prism/pyramid are computed. The subset of tetrahedra of T triangulating each potential cell is then determined. Quality checks allow to early discard poor quality cells and to dramatically improve the efficiency of the method. Each potential hexahedron/prism/pyramid is computed only once. Around 3 millions potential hexahedra are computed in 10 seconds on a laptop. We finally demonstrate that the set of potential hexes built by our algorithm is significantly larger than those built using predefined patterns of subdivision of a hexahedron in tetrahedral elements.Comment: Preprint submitted to CAD (26th IMR special issue
    • …
    corecore