14 research outputs found

    Risks and benefits of lethal male fighting in the colonial, polygynous thrips Hoplothrips karnyi (Insecta: Thysanoptera)

    Full text link
    Males of Hoplothrips karnyi (Hood) (Insecta: Thysanoptera), a colonial fungus-feeding thrips, fight each other in defense of communal egg mass sites, where they mate with females that come to oviposit. Fighting males stab each other with their enlarged, armed forelegs and hit each other with their abdomens. Escalated fights occur between large males of similar size. Fights are often lethal; males that died during observations fought more frequently than other males, were stabbed more often and more severely than other males, and were relatively large, but somewhat smaller than their opponents. Large males tend to win fights and guard egg masses, and they secure about 80% of last matings before ovipositions. Guarding males apparently assess female reproductive condition by putting their forelegs partially around females' abdomens; guarding males, but not nonguarding males, mate preferentially with females that have yet to oviposit. Non-guarding males mate with females away from egg masses, sneak matings at egg masses, and occasionally challenge guarding males. Challenges tend to follow matings by non-guarding males at egg masses. Each of four observed or inferred takeovers was followed by the death of the guarding male that lost. Male fighting strategies are discussed in terms of the consistency of lethal fighting with game theory models. Guardin males appear to pursue a classical “hawk” strategy of “escalate until injured or victorious”. This strategy may be advantageous because only large males become guarders, the mating success of guarders greatly exceeds that of non-guarders, and high population viscosity ensures that benefits from killing an opponent accrue directly to gaurders. The occurrence of challenges by large non-guarders implies that fighting ability and resource value asymmetries between males change over time; such changes may result from the energetic costs of guarding, injury to guarding males, or depletion of guarding males' supply of sperm.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46885/1/265_2004_Article_BF00299845.pd

    Role of the lesion scar in the response to damage and repair of the central nervous system

    Get PDF
    Traumatic damage to the central nervous system (CNS) destroys the blood-brain barrier (BBB) and provokes the invasion of hematogenous cells into the neural tissue. Invading leukocytes, macrophages and lymphocytes secrete various cytokines that induce an inflammatory reaction in the injured CNS and result in local neural degeneration, formation of a cystic cavity and activation of glial cells around the lesion site. As a consequence of these processes, two types of scarring tissue are formed in the lesion site. One is a glial scar that consists in reactive astrocytes, reactive microglia and glial precursor cells. The other is a fibrotic scar formed by fibroblasts, which have invaded the lesion site from adjacent meningeal and perivascular cells. At the interface, the reactive astrocytes and the fibroblasts interact to form an organized tissue, the glia limitans. The astrocytic reaction has a protective role by reconstituting the BBB, preventing neuronal degeneration and limiting the spread of damage. While much attention has been paid to the inhibitory effects of the astrocytic component of the scars on axon regeneration, this review will cover a number of recent studies in which manipulations of the fibroblastic component of the scar by reagents, such as blockers of collagen synthesis have been found to be beneficial for axon regeneration. To what extent these changes in the fibroblasts act via subsequent downstream actions on the astrocytes remains for future investigation

    Neuroinflammation and psychiatric illness

    Get PDF

    Macroscale multimodal imaging reveals ancient painting production technology and the vogue in Greco-Roman Egypt

    Get PDF
    Abstract Macroscale multimodal chemical imaging combining hyperspectral diffuse reflectance (400–2500 nm), luminescence (400–1000 nm), and X-ray fluorescence (XRF, 2 to 25 keV) data, is uniquely equipped for noninvasive characterization of heterogeneous complex systems such as paintings. Here we present the first application of multimodal chemical imaging to analyze the production technology of an 1,800-year-old painting and one of the oldest surviving encaustic (“burned in”) paintings in the world. Co-registration of the data cubes from these three hyperspectral imaging modalities enabled the comparison of reflectance, luminescence, and XRF spectra at each pixel in the image for the entire painting. By comparing the molecular and elemental spectral signatures at each pixel, this fusion of the data allowed for a more thorough identification and mapping of the painting’s constituent organic and inorganic materials, revealing key information on the selection of raw materials, production sequence and the fashion aesthetics and chemical arts practiced in Egypt in the second century AD

    Neuropathic Pain After Spinal Cord Injury: Challenges and Research Perspectives

    No full text

    Setting the stage for functional repair of spinal cord injuries: a cast of thousands

    No full text
    corecore