17 research outputs found

    A Harmonic-based Fault detection algorithm for Microgrids

    Full text link
    The trend toward Microgrids (MGs) is significantly increasing by employing Distributed Generators (DGs) which leads to new challenges, especially in the fault detection. This paper proposes an algorithm based on the Total Harmonic Distortion (THD) of the grid voltages to detect the events of faults in MGs. The algorithm uses the THD together with the estimate amplitude voltages and the zero-sequence component for the detection and identification of the faults. The performance is evaluated by using MATLAB/Simulink simulations to validate the capability for detecting different fault types in the least possible time.Comment: Proc. of the Interdisciplinary Conference on Mechanics, Computers and Electrics (ICMECE 2022) 6-7 October 2022, Barcelona, Spai

    A Fast Power Calculation Algorithm for Three-Phase Droop-Controlled-Inverters Using Combined SOGI Filters and Considering Nonlinear Loads

    Get PDF
    The power calculation is an indispensable element in droop-controlled inverters because the bandwidth of the measured power has a direct impact on the controller performance. This paper proposes a fast and accurate power calculation algorithm based on the combined Second Order Generalized Integrator (SOGI) filters in stationary coordinates for a three-phase system, which takes into consideration the use of nonlinear loads. The power calculation scheme is formed by the two-stage SOGI filters that are employed for obtaining the active and reactive powers required to perform a droop-based inverter operation, respectively. From the two-stage structure, the first SOGI is used as a band-pass filter (BPF) for filtering harmonics and obtaining the fundamental current of the nonlinear load; The second SOGI is used as a low-pass filter (LPF) for extracting the DC-component, which corresponds with the average power. A small-signal model of a two droop-controlled inverters system is built to obtain the dynamical response and stability margin of the system. And compared it with the dynamical behaviour of a standard droop-control method. Next, the proposed power calculation system is designed in order to achieve the same ripple amplitude voltage as that obtained with the standard droop-control method by adjusting the bandwidth gains. Through simulation and hardware in the loop (HIL) validation, the proposed approach presents a faster and more accurate performance when sharing nonlinear loads, and also drives the inverters’ output voltage with lower distortion.Peer ReviewedPostprint (published version

    Hil‐assessed fast and accurate single‐phase power calculation algorithm for voltage source inverters supplying to high total demand distortion nonlinear loads

    Get PDF
    The dynamic performance of the local control of single-phase voltage source inverters (VSIs) can be degraded when supplying to nonlinear loads (NLLs) in microgrids. When this control is based on the droop principles, a proper calculation of the active and reactive averaged powers (P–Q) is essential for a proficient dynamic response against abrupt NLL changes. In this work, a VSI supplying to an NLL was studied, focusing the attention on the P–Q calculation stage. This stage first generated the direct and in-quadrature signals from the measured load current through a second-order generalized integrator (SOGI). Then, the instantaneous power quantities were obtained by multiplying each filtered current by the output voltage, and filtered later by utilizing a SOGI to acquire the averaged P–Q parameters. The proposed algorithm was compared with previous proposals, while keeping the active power steady-state ripple constant, which resulted in a faster calculation of the averaged active power. In this case, the steady-state averaged reactive power presented less ripple than the best proposal to which it was compared. When reducing the velocity of the proposed algorithm for the active power, it also showed a reduction in its steady-state ripple. Simulations, hardware-in-the-loop, and experimental tests were carried out to verify the effectiveness of the proposal

    A power calculation algorithm for single-phase droop-operated-inverters considering linear and nonlinear loads HIL-assessed

    Get PDF
    The active and reactive powers, P and Q, are crucial variables in the parallel operation of single-phase inverters using the droop method, introducing proportional droops in the inverter output frequency and voltage amplitude references. P and Q, or P-Q, are calculated as the product of the inverter output voltage and its orthogonal version with the output current, respectively. However, when sharing nonlinear loads these powers, Pav and Qav, should be averaged by low-pass filters (LPFs) with a very low cut-off frequency to avoid the high distortion induced by these loads. This forces the droop method to operate at a very low dynamic velocity and degrades the system stability. Then, different solutions have been proposed in literature to increase the system velocity, but only considering linear loads. Therefore, this work presents a method to calculate Pav and Qav using second-order generalized integrators (SOGI) to face this problem with nonlinear loads. A double SOGI (DSOGI) approach is applied to filter the nonlinear load current and provide its fundamental component to the inverter, leading to a faster dynamic velocity of the droop-based load sharing capability and improving the stability. The proposed method is shown to be faster than others in the literature when considering nonlinear loads, while smoothly driving the system with low distortion levels. Simulations, hardware-in-loop (HIL) and experimental results are provided to validate this proposal

    Power calculation algorithm for single-phase droop-operated inverters considering nonlinear loads and unsing n-order SOGI filtering

    Get PDF
    The average active and reactive powers, P and Q, are crucial parameters that have to be calculated when sharing common loads between parallelized droop-operated single-phase inverters. However, the droop method algorithm should employ low-pass filters (LPF) with very low cut-off frequency to minimize the distortion impact in the provide droop amplitude and frequency references. This situation forces the droop control to operate at a very low dynamic velocity, degrading the stability of the parallelized system. For this reason, different solutions had been proposed in literature to increase the droop velocity, but the issues derived from the sharing of nonlinear loads had not been properly considered. This work proposes a novel method to calculate P and Q based on the fundamental components of the inverter's output voltage and current and using the measured phase angle between the output voltage and current. The method is used under normal and highly distorting conditions due to the sharing non-linear loads. The fundamental components are obtained by means of the highly filtering capability provided by norder cascaded second order generalized integrators (nSOGI). The proposed method leads to faster and more accurate P and Q calculations that enhances the droop-method dynamic performance. Simulations are provided to validate the proposal.Peer ReviewedPostprint (published version

    A distributed real-time power management scheme for shipboard zonal multi-microgrid system

    Get PDF
    The increasing demands of reducing fuel consumption for marine transportation have motivated the use of high fuel efficiency power plants and the development of power management systems (PMS). Current studies on shipboard PMS are mostly categorized as centralized, which are easy to be implemented and able to converge to the global optimum solutions. However, centralized techniques may suffer from the high computational burden and single-point failures. Considering the future trends of marine vessels toward zonal electrical distribution (ZED), distributed PMS are becoming an alternative choice. To achieve the ship high fuel-efficiency operation under high fluctuated propulsion loads, a real-time distributed PMS is developed in this paper that can acquire as good fuel economy as centralized PMS, but with faster computing speed. With a combination of filter-based, rule-based, and optimization-based approaches in a highly computationally efficient manner, the distributed PMS is constructed based on three layers that guarantees not only high fuel efficiency, but also sufficient energy reservation in different sailing modes and even in faulty conditions. Convergence tests and multiple case studies are conducted to prove the effectiveness of the proposed PMS in terms of fast convergence speed, improved fuel efficiency, and enhanced resilience.Peer ReviewedPostprint (published version

    A power calculation algorithm for single-phase droop-operated-inverters considering linear and nonlinear loads HIL-assessed

    Get PDF
    The active and reactive powers, P and Q, are crucial variables in the parallel operation of single-phase inverters using the droop method, introducing proportional droops in the inverter output frequency and voltage amplitude references. P and Q, or P-Q, are calculated as the product of the inverter output voltage and its orthogonal version with the output current, respectively. However, when sharing nonlinear loads these powers, Pav and Qav, should be averaged by low-pass filters (LPFs) with a very low cut-o frequency to avoid the high distortion induced by these loads. This forces the droop method to operate at a very low dynamic velocity and degrades the system stability. Then, di erent solutions have been proposed in literature to increase the system velocity, but only considering linear loads. Therefore, this work presents a method to calculate Pav and Qav using second-order generalized integrators (SOGI) to face this problem with nonlinear loads. A double SOGI (DSOGI) approach is applied to filter the nonlinear load current and provide its fundamental component to the inverter, leading to a faster dynamic velocity of the droop-based load sharing capability and improving the stability. The proposed method is shown to be faster than others in the literature when considering nonlinear loads, while smoothly driving the system with low distortion levels. Simulations, hardware-in-loop (HIL) and experimental results are provided to validate this proposal.Peer ReviewedPostprint (published version

    HIL-assessed fast and accurate single-phase power calculation algorithm for voltage source inverters supplying to high total demand distortion nonlinear loads

    Get PDF
    The dynamic performance of the local control of single-phase voltage source inverters (VSIs) can be degraded when supplying to nonlinear loads (NLLs) in microgrids. When this control is based on the droop principles, a proper calculation of the active and reactive averaged powers (P–Q) is essential for a proficient dynamic response against abrupt NLL changes. In this work, a VSI supplying to an NLL was studied, focusing the attention on the P–Q calculation stage. This stage first generated the direct and in-quadrature signals from the measured load current through a second-order generalized integrator (SOGI). Then, the instantaneous power quantities were obtained by multiplying each filtered current by the output voltage, and filtered later by utilizing a SOGI to acquire the averaged P–Q parameters. The proposed algorithm was compared with previous proposals, while keeping the active power steady-state ripple constant, which resulted in a faster calculation of the averaged active power. In this case, the steady-state averaged reactive power presented less ripple than the best proposal to which it was compared. When reducing the velocity of the proposed algorithm for the active power, it also showed a reduction in its steady-state ripple. Simulations, hardware-in-the-loop, and experimental tests were carried out to verify the effectiveness of the proposal.Peer ReviewedPostprint (published version

    Comparison between different droop based control techniques and a virtual control oscillator

    Get PDF
    This work presents a literature review about control techniques for parallel connected power inverters under microgrid applications. Some control strategies, based on droop control for parallel inverters of distributed generation units in an ac distribution system will be presented in this work. Finally, an important method called Virtual Oscillating Control (VOC) is suggested for connecting voltage source inverters. Inverters are able to work in parallel with a constant-voltage constant frequency system, as well as with other inverters and also in standalone operation. The different power sources can share the load also under unbalanced conditions. Throughout this work several simulation results are presented in order to demonstrate the behaviour the behavior of the different control strategies tested.Peer ReviewedPostprint (published version
    corecore