4 research outputs found

    PACAP-38 and PACAP(6–38) Degranulate Rat Meningeal Mast Cells via the Orphan MrgB3-Receptor

    Get PDF
    Infusion of pituitary adenylate cyclase activating peptide-38 (PACAP-38) provokes migraine attacks in migraineurs and headache in non-migraineurs. Adverse events like long-lasting flushing and heat sensation can be terminated with oral antihistamine treatment, indicating the involvement of mast cell activation after PACAP-infusion. Degranulation of rat peritoneal mast cells was provoked by several isoforms of PACAP via previously unknown receptor pharmacology. The effect might thus be mediated either via specific splice variants of the PAC1-receptor or via an unknown receptor for PACAP-38. In the present study, we characterize degranulation of rat meningeal mast cells in response to PACAP-receptor ligands. Furthermore, we investigate if PACAP-38-induced mast cell degranulation is mediated via PAC1-receptor splice variants and/or via the orphan Mas-related G-protein coupled member B3 (MrgB3)-receptor. To address this, the pharmacological effect of different PACAP isoforms on meningeal mast cell degranulation was investigated in the hemisected skull model after toluidine blue staining followed by microscopic quantification. Presence of mRNA encoding PAC1-receptor splice variants and the MrgB3-receptor in rat mast cells was investigated by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) analysis. The effect of PACAP isoforms on PAC1- and MrgB3-receptor-expressing Xenopus laevis oocytes were performed by two-electrode voltage-clamp (TEVC) electrophysiology. PACAP-38 is a more potent mast cell degranulating agent than Pituitary Adenylate Cyclase Activating Peptide-27 (PACAP-27) in the meninges. Presence of mRNA encoding the PAC1-receptor and its different splice variants could not be detected in peritoneal mast cells by RT-PCR, whereas the orphan MrgB3-receptor, recently suggested to be a mediator of basic secretagogues-induced mast cell degranulation, was widely present. In PAC1-receptor-expressing Xenopus laevis oocytes both PACAP-38, PACAP-27 and the specific PAC1-receptor agonist maxadilan were equipotent, however, only PACAP-38 showed a significant degranulatory effect on mast cells. We confirmed Pituitary Adenylate Cyclase Activating Peptide(6–38) [PACAP(6–38)] to be a PAC1-receptor antagonist, and we demonstrated that it is a potent mast cell degranulator and have an agonistic effect on MrgB3-receptors expressed in oocytes. The present study provides evidence that PACAP-induced mast cell degranulation in rat is mediated through a putative new PACAP-receptor with the order of potency being: PACAP-38 = PACAP(6–38) > > PACAP-27 = maxadilan. The results suggest that the observed responses are mediated via the orphan MrgB3-receptor

    Characterization of erenumab and rimegepant on calcitonin gene-related peptide induced responses in <i>Xenopus Laevis</i> oocytes expressing the calcitonin gene-related peptide receptor and the amylin-1 receptor

    No full text
    BACKGROUND: The clinical use of calcitonin gene-related peptide receptor (CGRP-R) antagonists and monoclonal antibodies against CGRP and CGRP-R has offered new treatment possibilities for migraine patients. CGRP activates both the CGRP-R and structurally related amylin 1 receptor (AMY(1)-R). The relative effect of erenumab and the small-molecule CGRP-R antagonist, rimegepant, towards the CGRP-R and AMY-R needs to be further characterized. METHODS: The effect of CGRP and two CGRP-R antagonists were examined in Xenopus laevis oocytes expressing human CGRP-R, human AMY(1)-R and their subunits. RESULTS: CGRP administered to receptor expressing oocytes induced a concentration-dependent increase in current with the order of potency CGRP-R> > AMY(1)-R > calcitonin receptor (CTR). There was no effect on single components of the CGRP-R; calcitonin receptor-like receptor and receptor activity-modifying protein 1. Amylin was only effective on AMY(1)-R and CTR. Inhibition potencies (pIC(50) values) for erenumab on CGRP induced currents were 10.86 and 9.35 for CGRP-R and AMY(1)-R, respectively. Rimegepant inhibited CGRP induced currents with pIC(50) values of 11.30 and 9.91 for CGRP-R and AMY(1)-R, respectively. CONCLUSION: Our results demonstrate that erenumab and rimegepant are potent antagonists of CGRP-R and AMY(1)-R with 32- and 25-times preference for the CGRP-R over the AMY(1)-R, respectively. It is discussed if this difference in affinity between the two receptors is the likely reason why constipation is a common and serious adverse effect during CGRP-R antagonism but less so with CGRP binding antibodies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s10194-022-01425-9
    corecore