55,128 research outputs found

    Grassroots Initiatives in Reviving Nepal\u27s Forestry Resources

    Get PDF

    Seismic qualification of directional valve

    Get PDF
    Seismic qualification tests on pneumatically operated directional valve were carried out in the shake table facility in Structural Integrity Division. Determination of the fundamental frequency for directional valve was carried out through exploratory vibration test as per ANSI B 16.41 Annexure E (Para E-3) to ascertain extent of flexibility as defined in the standard. Seismic (static) load test on same directional valve was also carried out to ascertain its capabilities to withstand the expected dynamic, seismic stresses and to ensure that the valves will not be subjected to performance degradation or malfunction under seismic conditions. This report describes the final seismic qualification documentation for directional valve manufactured by M/s Vijay Fire Protection Systems Ltd, Mumbai

    The host galaxies of luminous radio-quiet quasars

    Full text link
    We present the results of a deep K-band imaging study which reveals the host galaxies around a sample of luminous radio-quiet quasars. The K-band images, obtained at UKIRT, are of sufficient quality to allow accurate modelling of the underlying host galaxy. Initially, the basic structure of the hosts is revealed using a modified Clean deconvolution routine optimised for this analysis. 2 of the 14 quasars are shown to have host galaxies with violently disturbed morphologies which cannot be modelled by smooth elliptical profiles. For the remainder of our sample, 2D models of the host and nuclear component are fitted to the images using the chi-squared statistic to determine goodness of fit. Host galaxies are detected around all of the quasars. The reliability of the modelling is extensively tested, and we find the host luminosity to be well constrained for 9 quasars. The derived average K-band absolute K-corrected host galaxy magnitude for these luminous radio-quiet quasars is =-25.15+/-0.04, slightly more luminous than an L* galaxy. The spread of derived host galaxy luminosities is small, although the spread of nuclear-to-host ratios is not. These host luminosities are shown to be comparable to those derived from samples of quasars of lower total luminosity and we conclude that there is no correlation between host and nuclear luminosity for these quasars. Nuclear-to-host ratios break the lower limit previously suggested from studies of lower nuclear luminosity quasars and Seyfert galaxies. Morphologies are less certain but, on the scales probed by these images, some hosts appear to be dominated by spheroids but others appear to have disk-dominated profiles.Comment: 16 pages, 8 figures, revised version to be published in MNRA

    Real-time cross-layer design for large-scale flood detection and attack trace-back mechanism in IEEE 802.11 wireless mesh networks

    Get PDF
    IEEE 802.11 WMN is an emerging next generation low-cost multi-hop wireless broadband provisioning technology. It has the capability of integrating wired and wireless networks such as LANs, IEEE 802.11 WLANs, IEEE 802.16 WMANs, and sensor networks. This kind of integration: large-scale coverage, decentralised and multi-hop architecture, multi-radios, multi-channel assignments, ad hoc connectivity support the maximum freedom of users to join or leave the network from anywhere and at anytime has made the situation far more complex. As a result broadband resources are exposed to various kinds of security attacks, particularly DoS attacks

    Adaptive antennas at the mobile and base stations in an OFDM/TDMA system

    Get PDF
    In recent years, several smart antenna systems have been proposed and demonstrated at the base station (BS) of wire-less communications systems, and these have shown that significant system performance improvement is possible. In this paper, we consider the use of adaptive antennas at the BS and mobile stations (MS), operating jointly, in combination with orthogonal frequency-division multiplexing. The advantages of the proposed system includes reductions in average error probability and increases in capacity compared to conventional systems. Multiuser access, in space, time, and through subcarriers, is also possible and expressions for the exact joint optimal antenna weights at the BS and MS under cochannel interference conditions for fading channels are derived. To demonstrate the potential of our proposed system, analytical along with Monte Carlo simulation results are provided

    Spread spectrum techniques for indoor wireless IR communications

    Get PDF
    Multipath dispersion and fluorescent light interference are two major problems in indoor wireless infrared communications systems. Multipath dispersion introduces intersymhol interference at data rates above 10 Mb/s, while fluorescent light induces severe narrowband interference to baseband modulation schemes commonly used such as OOK and PPM. This article reviews the research into the application of direct sequence spread spectrum techniques to ameliorate these key channel impairments without having to resort to complex signal processing techniques. The inherent properties of a spreading sequence are exploited in order to combat the ISI and narrowband interference. In addition, to reduce the impact of these impairments, the DSSS modulation schemes have strived to be bandwidth-efficient and simple to implement. Three main DSSS waveform techniques have been developed and investigated. These are sequence inverse keying, complementary sequence inverse keying, and M-ary biorthogonal keying (MBOK). The operations of the three systems are explained; their performances were evaluated through simulations and experiments for a number of system parameters, including spreading sequence type and length. By comparison with OOK, our results show that SIK, CSIK, and MBOK are effective against multipath dispersion and fluorescent light interference becausc the penalties incurred on the DSSS schemes are between 0-7 dB, while the penalty on OOK in the same environment is more than 17 dB. The DSSS solution for IR wireless transmission demonstrates that a transmission waveform can he designed to remove the key channel impairments in a wireless IR system
    corecore