6,701 research outputs found

    Modelling and experimental investigation of carangiform locomotion for control

    Get PDF
    We propose a model for planar carangiform swimming based on conservative equations for the interaction of a rigid body and an incompressible fluid. We account for the generation of thrust due to vortex shedding through controlled coupling terms. We investigate the correct form of this coupling experimentally with a robotic propulsor, comparing its observed behavior to that predicted by unsteady hydrodynamics. Our analysis of thrust generation by an oscillating hydrofoil allows us to characterize and evaluate certain families of gaits. Our final swimming model takes the form of a control-affine nonlinear system

    The oral microbiome and adverse pregnancy outcomes.

    Get PDF
    Significant evidence supports an association between periodontal pathogenic bacteria and preterm birth and preeclampsia. The virulence properties assigned to specific oral pathogenic bacteria, for example, Fusobacterium nucleatum, Porphyromonas gingivalis, Filifactor alocis, Campylobacter rectus, and others, render them as potential collaborators in adverse outcomes of pregnancy. Several pathways have been suggested for this association: 1) hematogenous spread (bacteremia) of periodontal pathogens; 2) hematogenous spread of multiple mediators of inflammation that are generated by the host and/or fetal immune response to pathogenic bacteria; and 3) the possibility of oral microbial pathogen transmission, with subsequent colonization, in the vaginal microbiome resulting from sexual practices. As periodontal disease is, for the most part, preventable, the medical and dental public health communities can address intervention strategies to control oral inflammatory disease, lessen the systemic inflammatory burden, and ultimately reduce the potential for adverse pregnancy outcomes. This article reviews the oral, vaginal, and placental microbiomes, considers their potential impact on preterm labor, and the future research needed to confirm or refute this relationship

    A Prototype Passive Microwave Retrieval Algorithm for Tundra Snow Density

    Get PDF
    Snow density data are important for a variety of applications, yet, to our knowledge, there are no robust methods for estimating spatiotemporal varying snow density in the Arctic environment. The current understanding of snow density variability is largely limited to manual in situ sampling, which is not feasible across large domains like the Canadian Arctic. This research proposes a passive microwave retrieval algorithm for tundra snow density. A two-layer electromagnetic snowpack model, representing depth hoar underlaying a wind slab layer, was used to estimate microwave emissions for use in an inverse model to estimate snow density. The proposed algorithm is predicated on solving the inverse model at boundary conditions for the snowpack layer densities to estimate snow density within a plausible range. An experiment was conducted to assess the algorithm’s ability to reproduce snow density estimates from snow courses at four high arctic sites in the Canadian tundra. The electromagnetic snowpack model was calibrated at one site and then evaluated at the three other sites. Results from the calibration and evaluation sites were similar and the algorithm replicated the density estimates from snow courses well with absolute error values approaching the uncertainty of the reference data (±10 %). The algorithm configuration appears best suited for estimating snow density conditions towards the end of the winter season. With more extensive forcing data (e.g. from global climate models) this algorithm could be applied across the tundra to provide information on snow density at scales that are not currently available

    Regulation of protein kinase B and glycogen synthase kinase-3 by insulin and beta-adrenergic agonists in rat epididymal fat cells - Activation of protein kinase B by wortmannin-sensitive and -insensittve mechanisms

    Get PDF
    Previous studies using L6 myotubes have suggested that glycogen synthase kinase-3 (GSK-3) is phosphoryl ated and inactivated in response to insulin by protein kinase B (PKB, also known as Akt or RAG) (Cross, D, A, E., Alessi, D, R., Cohen, P., Andjelkovic, M., and Hemmings, B, A. (1995) Nature 378, 785-789), In the present study, marked increases in the activity of PKB have been shown to occur in insulin-treated rat epididymal fat cells with a time course compatible with the observed decrease in GSK-3 activity, Isoproterenol, acting primarily through beta(3)-adrenoreceptors, was found to decrease GSK-3 activity to a similar extent (approximately 50%) to insulin, However, unlike the effect of insulin, the inhibition of GSK by isoproterenol was not found to be sensitive to inhibition by the phosphatidylinositol 3'-kinase inhibitors, wortmannin or LY 294002, The change in GSK-3 activity brought about by isoproterenol could not be mimicked by the addition of permeant cyclic AMP analogues or forskolin to the cells, although at the concentrations used, these agents were able to stimulate lipolysis. Isoproterenol, but again not the cyclic AMP analogues, was found to increase the activity of PKB, although to a lesser extent than insulin. While wortmannin abolished the stimulation of PKB activity by insulin, it was without effect on the activation seen in response to isoproterenol, The activation of PKB by isoproterenol was not accompanied by any detectable change in the electrophoretic mobility of the protein on SDS-polyacrylamide gel electrophoresis. It would therefore appear that distinct mechanisms exist for the stimulation of PKB by insulin and isoproterenol in rat fat cells

    Technical note: Fourier transform infrared spectral analysis in tandem with 31P nuclear magnetic resonance spectroscopy elaborates detailed insights into phosphate partitioning during skimmed milk microfiltration and diafiltration

    Get PDF
    peer-reviewedOur previous study identified peaks in the 31P nuclear magnetic resonance (31P NMR) spectra of skim milk, denoting the interaction of different phosphate species such as inorganic and casein-associated phosphate during the separation of colloidal and serum phases of skim milk by microfiltration (MF) and diafiltration (DF). In the current study, we investigated the same samples generated by the aforementioned separation using attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy analysis. The results confirmed that the technique was not only capable of differentiating between the mineral equilibrium of the casein phosphate nanocluster (CPN) and milk serum, but also complemented the application of 31P NMR. An ATR-FTIR broad band in the region of 1,055 to 1,036 cm−1 and a specific band at 1,076 cm−1 were identified as sensitive to the repartitioning of different phosphate species in milk in accordance with the 31P NMR signals representing casein-associated phosphate and inorganic phosphate in the serum. A third ATR-FTIR signal at 1,034 cm−1 in milk, representing precipitated inorganic calcium phosphate, had not previously been detected by 31P NMR. Thus, the results indicate that a combination of ATR-FTIR and 31P NMR spectroscopies may be optimally used to follow mineral and protein phase changes in milk during membrane processing

    Influence of blade aerodynamic model on prediction of helicopter rotor aeroacoustic signatures

    Get PDF
    Brown’s vorticity transport model has been used to investigate how the local blade aerodynamic model influences the quality of the prediction of the high-frequency airloads associated with blade–vortex interactions, and thus the accuracy with which the acoustic signature of a helicopter rotor can be predicted. The vorticity transport model can accurately resolve the structure of the wake of the rotor and allows significant flexibility in the way that the blade loading can be represented. The Second Higher-Harmonic Control Aeroacoustics Rotor Test was initiated to provide experimental insight into the acoustic signature of a rotor in cases of strong blade–vortex interaction. Predictions of two models for the local blade aerodynamics are compared with the test data. A marked improvement in accuracy of the predicted high-frequency airloads and acoustic signature is obtained when a lifting-chord model for the blade aerodynamics is used instead of a lifting-line-type approach. Errors in the amplitude and phase of the acoustic peaks are reduced, and the quality of the prediction is affected to a lesser extent by the computational resolution of the wake, with the lifting-chord model producing the best representation of the distribution of sound pressure below the rotor

    Impact of the Quick-Response Code Based In-Class Assignments on Students Engagement and Retention

    Get PDF
    The paper describes a teaching technique alternative to online-based student response systems. We explore the potential of quick response (QR) code sheets as a tool for formative assessment, feedback, as well as a way to increase class engagement, student participation, information retention, and as a method to develop communication skills. The technique is neither institution nor course bound and can be implemented in classes of numerous sizes and levels. While it resembles more traditional teaching methods than computerized student response systems, it is student centered and accommodates digital natives’ approach to information gathering

    Timed Insemination vs. Modified Estrus Detection in Beef Heifers

    Get PDF
    Th e objective of this study was to compare a modified estrus detection and fixed time AI vs. no estrus detection and fixed time AI on subsequent pregnancy rates. Yearling heifers were estrus synchronized and AI at 72 ± 2 h after prostaglandin injection. In one group estrus was not detected and all heifers received gonadotropin releasing hormone at the fixed- time AI; in the other group estrus was detected at 58 ± 2 and 70 ± 2 h after prostaglandin and inseminated in the following order at 72 ± 2 h: heifers in estrus at 58 h, heifers in estrus at 70 h, and heifers not appearing in estrus at either observation. Similar AI conception and final pregnancy rates were achieved without the added labor of estrus detection

    Multi-Constellation GNSS: New Bounds on DOP and a Related Satellite Selection Process

    Get PDF
    GPS receivers convert the measured pseudoranges from the visible GPS satellites into an estimate of the position and clock offset of the receiver. For various reasons receivers might only track and process a subset of the visible satellites. It would be desired, of course, to use the best subset. In general selecting the best subset is a combinatorics problem; selecting m objects from a choice of n allows for n m potential subsets. And since the GDOP performance criterion is nonlinear and non-separable, finding the best subset is a brute force procedure; hence, a number of authors have described sub-optimal algorithms for choosing satellites. This paper revisits this problem, especially in the context of multiple GNSS constellations, for the GDOP and PDOP criteria. Included are a discussion of optimum constellations (based upon parallel work of these authors on achievable lower bounds to GDOP and PDOP), musings on how the non-separableness of DOP makes it impossible to rank order the satellites, and a review/discussion of subset selection algorithms. Our long term goal is the development of better selection algorithms for multi-constellation GNSS
    corecore