3,481 research outputs found

    Estimating Semiparametric Panel Data Models by Marginal Integration

    Get PDF
    We propose a new methodology for estimating semiparametric panel data models, with a primary focus on the nonparametric component. We eliminate individual effects using first differencing transformation and estimate the unknown function by marginal integration. We extend our methodology to treat panel data models with both individual and time effects. And we characterize the asymptotic behavior of our estimators. Monte Carlo simulations show that our estimator behaves well in finite samples in both random effects and fixed effects settings.Semiparametric Panel Data Model, Partially Linear, First Differencing, Marginal Integration

    Light Field Denoising via Anisotropic Parallax Analysis in a CNN Framework

    Full text link
    Light field (LF) cameras provide perspective information of scenes by taking directional measurements of the focusing light rays. The raw outputs are usually dark with additive camera noise, which impedes subsequent processing and applications. We propose a novel LF denoising framework based on anisotropic parallax analysis (APA). Two convolutional neural networks are jointly designed for the task: first, the structural parallax synthesis network predicts the parallax details for the entire LF based on a set of anisotropic parallax features. These novel features can efficiently capture the high frequency perspective components of a LF from noisy observations. Second, the view-dependent detail compensation network restores non-Lambertian variation to each LF view by involving view-specific spatial energies. Extensive experiments show that the proposed APA LF denoiser provides a much better denoising performance than state-of-the-art methods in terms of visual quality and in preservation of parallax details
    corecore